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Abstract 
The behavior of the angular momentum of the two dimensional Anisotropic Kepler Problem (AKP) is addressed. We 

find here ourselves, from the point of view of physics didactics, with a classical mechanics ``simple" problem that 

should be carefully analyzed from the outset. Taking into account that the angular momentum varies with time due to 

an ``inertial torque", we are still allowed to restrict the problem to a two dimensional motion, and then, being the 

angular momentum in this restricted case, a one-dimensional variable, we study how its behavior can describe the 

dynamics of this chaotic system. The approach to this problem through the angular momentum, to our knowledge, has 

not been reported in the literature. We investigate, from a numerical solution of the equations of motion, different 

features of this quantity and obtain a return plot for the angular momentum, as well as some phase space diagrams for 

the torque vs. angular momentum, for different values of the anisotropy parameter, by using a Poincare surface section. 
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Resumen 

En el presente trabajo estudiamos el comportamiento del momento angular en el problema de Kepler anisotrópico 

(AKP) en dos dimensiones. Nos encontramos aquí, desde el punto de vista de la didáctica de la física, con un problema 

``sencillo" de la mecánica clásica, que debe ser analizado con cuidado desde el principio. Tomando en cuenta que el 

momento angular varía con el tiempo debido a una ``torca inercial", es aun posible restringir el problema a un 

movimiento en dos dimensiones, y de esta manera, siendo el momento angular en este caso restringido una variable 

unidimensional, analizamos cómo su comportamiento puede describir la dinámica de este sistema caótico. El enfoque 

de este problema a través del momento angular, hasta donde sabemos, no ha sido reportado en la literatura. A partir de 

una solución numérica de las ecuaciones, se investigan diferentes características de esta variable y obtenemos una 

``gráfica de retorno" para el momento angular, así como algunos diagramas de espacio fase de la torca contra momento 

angular, para diferentes valores del parámetro de anisotropía, utilizando una superficie sección de Poincare. 
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I. INTRODUCTION 
 

The anisotropic Kepler problem (AKP) originated in the 

description of an electron close to a donor impurity in a 

Silicon or Germanium semiconductor [1], inspired the 

classical AKP, and this Hamiltonian system was one of the 

first “simple” systems for which the chaos was rigorously 

proved [2, 3]. It has also been used to study the interplay 

between classical and quantum mechanics [3]. In fact, as 

Gutzwiller [4] pointed out, the quantum mechanical 

systems whose classical behavior is chaotic reveal 

significant differences in the character of their wave 

functions, the distribution of their energy levels, among 

other properties. Most of the analysis of the AKP has been 

done from numerical calculations for the trajectory, both in 

the coordinates space and in the phase space. There are 

also mathematical treatments of the classical AKP [5, 6, 7]. 

 

II. THE HAMILTONIAN  

 

The Hamiltonian of the AKP can be reduced from three to 

two degrees of freedom, by taking into account the 

symmetry around an axis, and appropriate initial 

conditions
1
. 

It is expressed in the form 

 
2 2 2 2

= ( / 2 ) ( / 2 ) / ,
x y

H p p G x yµ ν+ − +           (1) 

 

where µ and ν are the elements of the mass tensor, which 

means the existence of different mass parameter for each 

axis. Here it is not considered a centrifugal potential, 

which stabilizes the trajectories and in which case the hard 

                                                 
1In the non-restricted case the motion will be in general, in the 

three dimensional space. This is due to the fact that the angular 

momentum is not conserved. 
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chaos is not produced. As we know, in the ordinary Kepler 

problem this centrifugal potential, is an pseudo-potential 

which is due to the constant angular momentum. 

This Hamiltonian, which is the energy of the particle, is 

conserved because the potential is independent of the 

velocity, just the same as in the ordinary Kepler problem, 

but the angular momentum for the AKP is no longer 

constant, except of course in the isotropic limit. As in the 

ordinary case, here the Hamiltonian does not depend 

explicitly on time, then it means that it is a constant of 

motion. If we write this Hamiltonian in polar coordinates, 

in order to see explicitly the behavior of the angular 

momentum we start from the transformation equations 

 

= ,x rcosθ                                    (2) 

 

= ,y rsinθ                                     (3) 

 

and taking the derivatives we write 

 

= ,x rcos r sinθ θ θ− && &                             (4) 

 

                        = .y rsin r cosθ θ θ+ && &                              (5) 

 

The momenta px and py are related to the velocities in the 

form 

 

= , = ,x yp x p yµ ν& &                           (6) 

 

and being r the radial coordinate, r= 2 2 ,x y+  we write 

from Eq.(1) 

 

2 21 1
2 2

= ,
G

H x y
r

µ ν+ −& &

                    
(7) 

 

and if we sustitute Eqs.(2)-(5) in this expression, we obtain 

 
2 2 2 2 2 2 2=1/ 2[ ( ) ( )H r cos sin r sin cosµ θ ν θ θ µ θ ν+ + +&&  

        2 ( )] / .rr sin cos G rθ θ θ µ ν− − −&&                           (8) 

 

In this expression we see that as the two mass parameters 

are different, µ ≠ ν, it is not possible to eliminate explicitly 

the angular variable, θ therefore H is not invariant under an 

angular translation, which means that the conjugate 

variable, the angular momentum, is not a constant of 

motion. 
2
 

Yoshida [8] obtained a criterion for the non-

integrability of the AKP. Besides the total energy, he 

proved the non-existence of an additional constant of 

motion of the problem. Gutzwiller [4] made an analysis of 

the periodic orbits in the AKP, starting from the one-to-one 

relation between trajectories and the binary sequences 

obtained from the sign of the x coordinate of the particle, 

                                                 
2We point out here that, if in the last expression for the 

Hamiltonian, Eq. (8), we put
 
µ = ν, which corresponds to the 

isotropic case, then it is immediate to see that θ disappears 

explicitly, and then the angular momentum is conserved. 

taken each time it crosses the x axis. He obtains a formula 

to fit the action of each periodic orbit, from the numerical 

data of the binary sequences. 

In all the literature mentioned, it seems that the 

behavior of the angular momentum has not been described. 

For the two-dimensional Hamiltonian considered, the orbit 

remains in a plane, then the angular momentum, always 

directed normally to it, is a one-dimensional variable. In 

this work we explore the dynamics of the angular 

momentum, we start by pointing out its time variation, as 

well as that of the “inertial” torque. Then we make 

different graphs which involve the angular momentum; 

those are a return plot from a time series of the variable 

and some phase space diagrams using a Poincare surface of 

section, for different values of the anisotropy parameter ζ = 

µ/ν. 

 

 

III. ANGULAR MOMENTUM 
 

The angular momentum of the particle is by definition 

  

= = ( ) ,zL r p e
y x

xp yp× −                    (9) 

 

where ez is an unitary vector along the z axis.    

The torque is expressed as 

 

= / = ,N L v p r Fd dt × + ×                (10) 

 

the second term of this equation vanishes because the field 

of force is central, whereas the first term is different from 

zero, because in this case, being the mass a tensor, then v 

and p  are not collinear and the torque is written as 

  

= ( ) = ( )z zN e ex y y x x yv p v p v vν µ− − ,            (11) 

 

so, this inertial torque is not produced by the force, but by 

the anisotropy of the mass.
3
 It is proportional to the 

difference of the two mass parameters and to the product 

of the two components of the velocity. From this equation 

it is expected that near the origin, due to the energy 

conservation, the velocity is very high compared with 

regions far away from this point. This gives the torque, as 

we will see in the numerical calculations, an impulsive 

character. 

The angular momentum will experience variations that 

can oscillate within certain intervals, it will change 

between positive and negative values and it will have 

abrupt and irregular variations. 

Suppose that we start the motion of the particle by 

putting it initially at rest at some radial distance r0 from the 

origin. From the Eq. (1) its total energy will be 

 

                                                 
3We could think in a similar, but quite different problem where 

the anisotropy is in the field of force. In this case the field is not 

conservative (irrotational), the angular momentum and the torque 

assume a different form, but the equations of motion turn out to 

be mathematically equivalent. So, there is also one integral of 

motion which is not the energy. 
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0

= = ,
G

H E
r

−                               (12) 

 

which is a negative value because the particle is confined 

by the potential. From there on the particle will orbit 

around the origin, and whenever its radial distance be 

again equal to r0, from Eq. (1) its kinetic energy will be 

zero, which means that it has reached the rest momentarily. 

Therefore those points for which r = r0 are turning points 

for the orbit. So we see that the allowed region for the 

trajectory of the particle is a circle of radius r0, which is 

obtained, according to Eq. (12), as the quotient -G/E. 

We point out here a qualitative difference between this 

problem and the ordinary Kepler problem. When we put 

initially the particle at rest at any point of this boundary, its 

initial angular momentum and torque are zero, but then as 

the particle travels toward the origin it acquires angular 

momentum and will not collide in the very first approach, 

as it would in the ordinary Kepler problem if the angular 

momentum is zero. 

Then, the angular momentum for this system seems to 

be a relevant quantity to study. 

 

 

IV. HAMILTON EQUATIONS 
 

Here we start from the Hamiltonian in the coordinate space 

xy, Eq. (1), and write the corresponding Hamilton 

equations [9] 

  

= / = / ,
x x

x H p p µ∂ ∂&                         (13) 

 

= / = / ,y yy H p p ν∂ ∂&                         (14) 

 
2 2 3/2= / = /( ) ,xp H x Gx x y−∂ ∂ − +&             (15) 

 
2 2 3/2= / = /( ) .

y
p H y G y x y−∂ ∂ − +&             (16) 

 

Therefore, combining these equations one obtains 

 
2 2 3/2= ( / ) /( ) ,x G x x yµ− +&&                    17) 

 
2 2 3/2= ( / ) /( ) .y G y x yν− +&&                 (18) 

 

  

V. NUMERICAL RESULTS 
 

For the numerical calculations we are using an arbitrary 

value for the constant G, and we give the system an energy 

for which the radius of the circular boundary is the unity, 

so that the x and y coordinates vary between -1 and 1. In all 

the results and graphs of this work we use a fourth order 

Runge-Kuta integration for the solution of the equations. 

In Figures 1 and 2 we have two examples of paths of 

the particle, one of them starting in the x axis, with an 

initial momentum directed along the positive y axis, and 

the other starts from the rest, at some point P in the circular 

boundary. Whenever the trajectory gets that boundary, it 

should come to rest, and that means a velocity reversal, in 

which case we may have periodic open orbits; those points 

reached by the trajectory are turning points of the orbit. In 

Figure 1 we see that the path is close to a periodic open 

orbit, which could be found by modifying slightly the 

initial conditions or the anisotropy parameter. 

 

  
FIGURE 1. Trajectory of the particle starting at the point in the 

horizontal axis, xi = 0.23, and the asymmetry parameter being 

ζ≡µ/ν=2.94. The unit circle is the boundary of the orbit. We see 

that in the fourth quadrant the orbit gets close to a turning point. 

 

 
FIGURE 2. Trajectory of the particle starting from the rest at a 

point P in the boundary, xi = 0.31 and yi = 2
1 ix−  and ξ = 2.94. 

As we see, this orbit is close to an open periodic orbit; at the end 

it goes to a collision with the origin. 
 

In Figure 3 we have a plot for the angular momentum and 

the torque as a function of time , corresponding to the 

trajectory of Figure 1 (taking a longer time). With the 

numerical values of coordinates and momenta we evaluate 

the expressions (9) and (10). We see here the irregular 

oscillations of the angular momentum, around the zero 
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value, and for the torque we appreciate, as we pointed out 

before, an impulsive character, when the particle 

approaches the origin, and it goes to a small value when it 

is far away. 

 
FIGURE 3. At the top we have the angular momentum as a 

function of time (arbitrary units). This corresponds to the orbit of 

Figure 1, at a longer elapsed time. The lower graph is the torque 

in the same time scale. 

 

In order to explore the structure in the variation of the 

angular momentum, we take a time series of this variable, 

from its values at a number k, of fixed time intervals, and 

from it we make in Figure 4, the return plot L(k+8) versus 

L(k). This shows clearly some isolated fixed points 

distributed along the diagonal at the angle π/4, where 

L(k+8) = L(k). In those fixed points the variation of the 

angular momentum tends to zero, and as the torque is zero, 

we see that those points should be near the boundary. This 

means that near the boundary the angular momentum tends 

to some fixed values, and those particular values are 

characteristic of the given path; they will change with the 

initial conditions and with the ξ parameter. 

 
FIGURE 4. A return plot of the angular momentum, obtained 

from a time series of L, which shows the variation of L(k+8) 

respect to L(k). We observe several fixed points distributed along 

the N = 0  axis, given by L(k+8) = L(k). The values of the 

parameters are:xi = 0.29, yi = 0 and ξ = 2.94, the length of each 

interval was taken as 103 ∆t, and the number of points is k = 

3500.  

 

In Figure 5, as in the rest of the diagrams, we use a 

Poincare surface of section, taken as the x axis, to make a 

phase space plot for the x coordinate and its respective 

linear momentum px. This diagram describes the projection 

of the dynamics of the system on the plane y = 0, taking 

into account that the Hamiltonian, (the energy of the 

system) is an integral of motion. We find that for ξ < 1.15, 

where we are close to the isotropic case, the collisions are 

more frequent, and there is almost no structure in the 

diagram. There is a defined structure for 1.15 < ξ <1.5. For 

this plot we are using ξ = 1.23 and for the initial values: xi 

= 0.4, yi = 0, pix = 0 and 2= 2 (1/ 1) /
iy i ix

p G x pν ξ− −  (so 

this quantity is known from the energy value, and will be 

used from here on). We observe two symmetric saddle 

points lying in the horizontal axis and layers of attractors 

in the second and fourth quadrants. This diagram is similar 

to that obtained by Bai and Zheng [7] using spherical 

coordinates. 

 
FIGURE 5. A plane phase space for x and px, taken a Poincare 

surface of section as the x axis. The values of the parameters are: 

xi = 0.64, yi = 0 and ξ = 1.21. 

 

In Figures 6 to 8 we have plots of the phase space diagram 

for the angular momentum, (the torque versus the angular 

momentum). This diagram formally gives the same 

description as a return plot, see Figure 4; but here instead 

of using a fixed time interval, we are taking the values of 

the variable from a surface section given by the x axis. 

This plot shows a complex structure which characterizes 

this variable. This structure occurs mainly for a region of 

small torque values, non small angular momentum, and for 

values of ξ between 1.15 and 1.5. In all these diagrams 

there is a central vertical region with no structure. In 

Figure 6 we observe quite clearly, a symmetry in the 

diagram with respect to the positive-slope diagonal. For 

values of ξ > 1.5 the width of L values becomes narrower, 

see Figure 7, the diagram looses structure, and as ξ 

increases, it tends gradually to a pair of values of L, one 

negative of the other. That is, for ξ > 6, L tends to a 

dichotomic behavior, as we appreciate in the Figure 8. 
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FIGURE 6. A plane phase space for angular momentum L and 

torque N, using also a Poincare surface of section, as the x axis. 

The parameters are xi = 0.64, yi  =0 and ξ = 1.21.  

 

 

 
FIGURE 7. A similar plot with the parameters xi = 0.64, yi = 0 

and ξ = 5.0. 

 
FIGURE 8. A similar plot with the parameters xi = 0.64, yi = 0 

and ξ =15.0. 

 

VI. SOME CONCLUSIONS 
 

We have investigated the behavior of the angular 

momentum of the two-dimensional classical anisotropic 

Kepler problem. In spite of having here a central field of 

force, we observe that the angular momentum varies with 

time due to the presence of an “inertial torque”. We see 

how the orbits lie in a circle whose radius depends on the 

energy value. The boundary of this circle acts as a turning 

point whenever the particle reaches there. This means that 

there can be periodic non closed orbits. By means of a 

numerical solution of the equations of motion, we study 

the behavior of the angular momentum. We exhibit some 

return plots where they appear some fixed points, which 

are characteristic of each particular trajectory. Those fixed 

points occur at zero torque, which means that near the 

boundary the angular momentum tends to some fixed 

values. We also obtain phase space diagrams for the torque 

and angular momentum within some particular regions for 

the values of the main parameters of the system, which are 

the asymmetry parameter and the initial conditions. 
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