
 

Lat. Am. J. Phys. Educ. Vol. 3, No. 2, May 2009 221 http://www.journal.lapen.org.mx 
 

The real pendulum: theory, simulation, experiment 
 
 

Giacomo Torzo1, 2, Paolo Peranzoni3 
1Department of Physics, Padova Universty, via Marzolo 8, 35131, Italy. 
2ICIS-CNR, Corso Stati Uniti 24, Padova, Italy. 
3Liceo Alvise Cornaro, via Riccoboni 14, Padova, Italy. 
 
E-mail: torzo@padova.infm.it 
 
(Received 10 February 2009; accepted 30 April 2009) 
 
 

Abstract 
We propose a new tool for laboratory curricula based on computer-aided data acquisition and analysis. A pendulum 
coupled to a low-friction rotary sensor offers variable length, variable mass, variable oscillation plane (to change the 
effective gravitational restoring torque) and two different kind of damping torque: “dynamic friction” (almost constant) 
and “viscous” proportional to the angular velocity. Simple models implemented in common spreadsheets allow to 
compare the experimental results with the theoretical predictions. 
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Resumen 
Proponemos una nueva herramienta para el programa de estudio del laboratorio basado en la adquisición de datos y 
análisis asistido por computadora. Un péndulo acoplado a un sensor rotatorio de baja fricción ofrece longitud variable, 
masa variable, plano de oscilación variable (para cambiar la torca de restauración efectiva) y dos tipos de torca 
amortiguada: “fricción dinámica” (casi constante) y “viscosa” proporcional a la velocidad angular. Modelos simples 
implementados en hojas de cálculo comunes permiten el comparar los resultados experimentales con las predicciones 
teóricas. 
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I. NUMERICAL SIMULATION IN PHYSICS  
 
It is well known that scientific research consists in a 
dialectic process, oscillating between theory and 
experiment, frequently including as an intermediate step a 
numerical simulation of phenomena, but it is not easy to 
reproduce this whole process at school. In particular some 
teacher assumes the numerical simulation as a substitution 
of the experiment in the lab. This may be misleading: in 
fact simulation and experiment are not at all equivalent. 
The results of simulations are completely determined by 
the underlying modelization, while the results of real 
experiments are mostly determined by the physical 
phenomena, even when the experimental setup (usually 
inspired by the model present in the researcher mind) takes 
an important role. 

Classic physics frequently needs using differential 
equations, which are rarely included in high school 
curricula. As a consequence, the teacher often restricts his 
teaching to very simple phenomena, or he (she) tries tricks 
and turnarounds, or gives to students bare formulas 
justified by sentences as “... it may be prove that...”. A 

better choice allowed by the widespread of personal 
computers both at school and at home, is the use of 
numerical integration of differential equations. This 
approach may be made quite simple by using iterated 
computation in a common spreadsheet (e.g. Microsoft 
Excel). 

The working principle of this method may be easily 
explained: for example if we want to integrate the motion 
equation in one dimension, given the initial conditions of a 
body (position xo and velocity vo at the time to), we may 
linearly approximate the same quantities after a short time 
interval Δt by the equations 

 
v t0 + Δt( )= v t0( )+ am Δt ,   (1) 

 
and 
 

s t0 + Δt( )= s t0( )+ vm Δt ,   (2) 
 
where we assume a constant acceleration equal to the mean 
value am = v t + Δt( ) − v t( )[ ]/Δt  in the time interval Δt , 
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and a constant velocity vm equal to the mean value 
vm = s t + Δt( ) − s t( )[ ]/Δt . 

Repeating the process for the next time interval we 
obtain the calculated vales for t=to+2 Δt and then for t=to+3 
Δt... and so on. 

There is one difficulty: the described procedure 
assumes we know the mean value of acceleration, while we 
know only the initial value. One solution (firstly suggested 
by Richard Feynman) is to use the initial acceleration to 
calculate the velocity at the time to+ Δt/2, and to take this 
value as mean value of the velocity in the interval Δt, and 
then to proceed with the recursive calculations that give 
positions at times Δt, 2Δt, 3Δt, ... and velocities at the times 
Δt + Δt/2, 2Δt + Δt/2, 3Δt + Δt/2, ... 

In order to simplify the procedure to be implemented in 
the electronic spreadsheet, we may use the initial 
acceleration to calculate the next velocity and the final 
velocity to calculate the next position. 

This approach may become particularly useful when 
dealing with phenomena that are intrinsically non-linear, as 
for example the pendulum oscillations at large amplitudes. 

 
 

II. THE PENDULUM MOTION EQUATION 
 

Let us consider a pendulum consisting of a uniform thin 
rod of length l and mass m rotating about a fixed pivot 
located at one of its end. The rod is attached to a uniform 
disc of mass m’ and radius r centred on the pivot and 
damped by a resistant torque TR. A point–like mass M is 
fixed on the rod at the distance L from the pivot. 

 

 
FIGURE 1. Sketch of forces for the ideal pendulum. 

 
The motion equation may be obtained by equating the time 
derivative of the angular momentum I ∂ω /∂dt  to the net 
torque T =- (ml/2 + M L) g sin φ + TR (ω): 

 
I ∂2φ /∂dt 2 = − ml / 2 + ML( )g sin φ + TR (ω) ,      (3) 

 

where φ is the elongation, ω =∂φ /∂dt is the angular 
velocity, I = 1 3ml 2 + ML2 + 2 3m*r 2  is the momentum of 
inertia, and TR (ω) is the resistant torque whose value 
depends on the kind of damping mechanism. 

The equation may be simplified into the form: 
 

∂2φ /∂dt 2 = −g(ζ / L) sin φ + T R (ω)/I , (4) 
 

where the coefficient ζ accounts for the pendulum non-
ideality (due to the masses of the rod and of the disc): 
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For l ≈ L , r << l , and m << M we get ζ ≈ 1, and the 
equation becomes the equation for ideal pendulum with 
damping: 

 
∂2φ /∂dt 2 = −(g /L) sin φ + T R (ω)/I .            (5) 

 
For small oscillation amplitudes, by letting sin φ ≈ φ , Eq. 
(5) may be approximated as: 

 
∂2φ /∂dt 2 = −(g / L)φ + T R (ω)/I .             (6) 

 
This, for TR = 0 (no damping), becomes 

 
∂2φ /∂dt 2 = −(g /L)φ ,                     (7) 

 
which has the stationary harmonic solution with angular 
velocity ω =√(g/L) and period T= 2π√(L/g). 

 
 

III. THE NUMERICAL SIMULATION 
 

Solving the simple equation (7) using calculus is often a 
too difficult task for students in high schools. Much easier 
is to find numerical solutions: with the previously 
described method the students may graph excellent 
approximated solutions not only for the simple equation (7) 
but also for the more difficult Eq. (6) (damped oscillations) 
and even for Eq. (5) (anharmonic oscillations). 

Let us start with the case of undamped motion for large 
oscillation amplitude, i.e. assuming TR = 0, while keeping 
the non-linear term of Eq. (5). The angular acceleration is 
d 2φ(t) / dt 2 = α (t) = g / L[ ]sin φ(t) . 

The relations to be used in the numerical computation 
are therefore: 

 
α (t) = g / L[ ]sin φ(t) ,                           (8) 

 
ω t + Δt( ) = ω t( ) + α t( ) Δt ,                      (9) 

φ t + Δt( ) = φ t( ) + ω t + Δt( ) Δt ,                  (10) 
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where we remark that in Eq. (10) the angular position is 
calculated using the final value of the angular velocity in 
the time interval Δt, while the angular velocity is calculated 
in Eq.(9) using the initial value of the angular acceleration. 

Figure 2 shows the three plots of angle, velocity and 
acceleration versus time at large amplitude oscillations 
(90°). 

 

 
FIGURE 2. Angle, velocity and acceleration versus time for 
undamped pendulum al large amplitude oscillations. 

 
It may be noted that the motion is strongly anharmonic: 
while the angle graph seems to be sinusoidal, the velocity 
graph approaches a triangular wave and the acceleration 
graph approaches a squarewave... 

From the data obtained in the spreadsheet recursive 
calculations we may easily compare the behavior of the 
real acceleration with the harmonic approximation (figure 
3) obtained by substituting in Eq. (4) the term 

g / L[ ]sin φ(t)  with its linear approximation g / L[ ]φ(t) . 
 

 
FIGURE 3. Comparison between real and approximated 
acceleration 

 
 

IV. THE PENDULUM MOTION WITH 
DAMPING 

 
If we introduce damping into our model the acceleration in 
Eq. (8) becomes: 

 
α t( ) = −(g /L) sinφ(t) − sgn(ω)α f (t) ,           (11) 

 
where α f  is the acceleration due to friction, whose sign is 
always opposite to the sign of the velocity ω.  

The friction force however may depend on velocity in 
different ways: it may be almost constant (sliding friction) 
or proportional to the velocity (viscous friction) 

In the first case we have: 
 

α t( ) = −(g /L) sinφ(t) − A sgn ω t( )[ ],         (12) 
 

where A is a constant.  
In the second case we have:  
 

α t( ) = −(g / L) sinφ(t) − Cω(t) ,           (13) 
 

where C is another constant.  
The above mentioned assumptions for the friction 

forces lead to some predictions about the pendulum 
motion. Let us briefly discuss the two different cases [1]. 
 
 
A. Sliding friction 

 
Assuming a constant friction torque with negative sign 
with respect to the sign of the angular velocity ω = dα/dt, 
we get TR = +C for ω > 0, TR = –C for ω <0 and TR = 0 for 
ω=0, i.e. TR=C sgn(ω), and the motion equation becomes: 

 
∂2φ /∂dt 2 = −(g /L)φ − (C / I ) sgn∂φ /∂t .       (14) 

 
Let us analyze small oscillations starting from initial 
elongation φ0 from rest (ω0 = 0). 

During the first half-oscillation the pendulum will 
sweep the total angle φ0 + φ1,� and it will reach a situation 
(φ= φ1, ω = 0) where we may calculate the energy balance. 

The initial potential energy MLg(1 – cos φ0) equals the 
new potential energy MLg(1 – cos φ1) plus the energy lost 
due to the dry friction work C(φ0 + φ1), or: 

 
MLg cos φ 0 − cos φ1( )= C φ1 + φ 0( ).          (15) 

 
By using the Werner formula, we have: 

 

cos φ 0 − cos φ1 = 2sin φ 0 + φ1( )
2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ sin φ 0 − φ1( )

2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,  (16) 

 
and using again the approximation sin φ ≈ φ : 

 
cos φ 0 − cos φ1 = φ 0 + φ1( )φ 0 − φ1( )/ 2 ,        (17) 

 
and the energy balance equation (15) gives for the 
elongation decrement Δφ =(φ0 – φ1) during one half-
period: 

 
Δφ = 2C/MLg.                           (18) 
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The calculation may repeated for the second half-
period, leading to the same result. As a conclusion: the 
elongation, during each half-period, decreases by the 
constant value Δφ=2C/MLg. 

Relation (18) gives an evaluation of the friction torque  
C = MLg Δφ/2, where the decrement Δφ  is expressed in 

rad. 
 
 

B. Viscous damping 
 

Let us now analyze the case of viscous damping, (torque 
proportional to the angular velocity). The motion equation 
is now: 

 
∂2φ /∂dt 2 = −(g /L)φ − (γ / I)∂φ /∂t ,          (19) 

 
and, with the positions δ = γ/2I and ωo

2 = g/L, it becomes 
 

∂2φ /∂dt 2 + 2∂φ∂t + ω
0

2 φ = 0.              (20) 
 

This equation, for small damping (δ << ωo), has the 
analytical solution φ(t) = φ 0e

−δt cosωt , where 
ω = ω 0

2 − δ 2 ≈ ω 0  
The elongation amplitude should therefore decrease 

exponentially, i.e. the decrement during each half-period 
should decrease proportionally to the amplitude itself. 
 
 
V. NUMERICAL SIMULATIONS 
 
The previous analysis should give to students a picture of 
the predicted pendulum motion for the two cases, but a 
graph of the motion would be much more useful. 
Numerical simulation offer an easy way to obtain such 
graphs (figures 4 and 5). 

 

FIGURE 4. Numerical simulation of oscillations damped by 
sliding friction. 
 

 

FIGURE 5. Numerical simulation of oscillations damped by 
viscous friction. 
 
 
VI. EXPERIMENTAL RESULTS  
 
The theoretical models and numerical simulation may be 
compared with experimental results by using a device 
which exploits a real-time data acquisition system to obtain 
a complete record of the motion (computer assisted Real 
Time Laboratory).  

Our pendulum is made of a perforated rubber ball 
(approximating a point-mass) attached to a thin aluminium 
rod (a knitting needle) whose end is fixed to the rotary 
sensor axis (figure 6). 

The pendulum effective length can be varied by sliding 
the rubber ball along the rod. The mass may be changed by 
using rubber balls of different sizes. 

 
 

 
FIGURE 6. The RTL pendulum. 



The real pendulum: theory, simulation, experiment 

Lat. Am. J. Phys. Educ. Vol. 3, No. 2, May 2009 225 http://www.journal.lapen.org.mx 
 

The angular deviation from horizontal position of the 
pendulum’s rotation axis can also be varied, and measured 
by a goniometer mounted close to the encoder. This feature 
allows to simulate the pendulum motion in a reduced 
gravity acceleration, as shown later in section IX. 

When the rotation axis is horizontal, the oscillation may be 
damped by two kinds of resistant torque TR: 1) a viscous drag 
provided by a magnet placed close to an aluminium disc 
fixed to the rotary sensor axis (the Foucault currents due to 
the magnet-disc interaction produce a torque proportional 
to the angular velocity of the disc), or 2) a nearly constant 
torque (sliding friction) provided by a small brush 
sweeping the disc. 

The intensity of each resistant torque may be varied by 
adjusting the position (of either the magnet or the brush) 
with respect to the disc. 

The RTL data acquisition system exploits a home-made 
rotary sensor with low-friction optical encoder [3], 
connected to a Texas Instrument graphing calculator 
through CBL interface (or to a PC through a LabPro 
interface) [4]. 

The rotary encoder allows recording the elongation φ 
versus time. From the measured values we may calculate 
and graph the absolute values of φ, and use them to build a 
new plot of the peak values of φ (amplitude) versus time. 
 
 
A. Sliding friction 

 
In figure 7 we report two records of the oscillations 
(obtained with a pendulum length l = 0.5 m, a mass M = 30 
g) for two values of the friction torque. 

The expected linear dependence of the amplitude on 
time is apparent. The last oscillations in both graphs 
indicate that the damping decreases at very small 
elongations: this is due to the brush bristles elasticity that 
kills the sliding friction (when the disc motion is small, the 
bristles bend and their free end follows the disc rotation: 
the point contact is fixed on disc and no sliding occurs). 

The values of the slope, in the linear fit of amplitude vs. 
time, are –3 degrees/s and –6.5 degrees/s, respectively. 
With a period given approximately by T = 2π√(L/g) = 1.42 
s we may calculate in both cases the value of Δφ , and we 
obtain for the friction torque C = MLg Δφ/2 the two values 
C = 5 mJ and C = 12 mJ , respectively. 

 
 
 
 
 
 
 
 
 

 
 
 

 
FIGURE 7. Oscillations recorded with different values of the dry 
friction. 

 
 
B. Viscous damping 

 
The same procedure may be used to analyze the motion in 
case of viscous drag, due to the magnet-disc interaction. In 
figure 8 we report the graphs of elongation vs. time and 
exponential best fits to the curves of amplitude vs. time, for 
two values of magnet-disc distance (1.5 mm and 1 mm, 
respectively). The fitting curve is φ(t) = φ 0 exp(−δt) + φ1 , 
where the damping coefficient δ  is the reciprocal of the 
decay constant τ. Reducing the magnet-disc gap decreases 
the time constant from 33 seconds to 14 seconds. 

Equivalent plots on the right side of figure 8 show the 
logarithm of amplitude decreasing linearly with time.
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FIGURE 8. Oscillations recorded with different values of the viscous damping: the amplitude vs. time is fitted by an exponential function at left . 
A linear regression of the natural log of amplitude vs. time is shown at right. 

 

 

 
 
X. COMPARING EXPERIMENTAL RESULTS 
WITH SIMULATIONS  

 
The RTL technique allows an easy comparison between 
experimental results and numerical simulations because data 
are taken by sampling angles φ at equal time intervals Δt.  
Angular velocity and acceleration are then calculated in real 
time as ω = φ t + Δt( ) − φ t( )[ ]/Δt , α = ω t + Δt( ) − ω t( )[ ]/Δt . 

An example of comparison is presented in figure 9 for 
sliding friction: initial values and friction coefficient are 
properly adjusted to fit the experimental data. The final part 
of the experimental graph indicates that the damping 
decreases at small elongations: this is due to the brush 
bristles elasticity that reduces the sliding friction at slow disc 
motion (the bristles bend and their free end follows the disc 
rotation: the point contact is fixed on disc and no sliding 
occurs). 

FIGURE 9. The line represents the values calculated by numerical 
simulation with the dry friction model using (2δ=0.3 rad/s2), and 
the dots are the measured values. 

 
A similar comparison for the case of viscous friction is 
shown in figure 10.  
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FIGURE 10. The line represents the values calculated by 
numerical simulation with the viscous friction model using 2δ = 
0.153 s-1, and the dots are the measured values. 

In both cases the agreement between experimental data and 
numerical simulation is extremely good. 
 
 
IX. PENDULUM WITH TILTED ROTATION 
AXIS 

 
When the pendulum rotation axis is tilted by an angle β, with 
respect to the usual horizontal position, the component g’ of 
the gravitational force acting on the mass M which produces 
the driving torque is reduced by the factor cos β.  

Therefore the harmonic solution of the motion equation 
will predict a reduced angular velocity ω’=√(g’/L) 
=√(gcosβ/L) and an increased period T’=2π√(L/gcosβ).  

 
 
TABLE I. The predicted and measured values of the period for 
different tilt angles. 
 

Angle β (degrees) (cos β)1/2 T ‘(s) T ‘(s) 

0 0.000 1.41 1.41 
5 0.997 1.41 1,40 
10 0.99 1,42 1,41 
15 0.98 1,44 1,42 
20 0.96 1.47 1.44 
25 0.95 1.48 1.45 
30 0.93 1.51 1.48 
35 0.90 1.56 1.52 
40 0.87 1.62 1.57 
45 0.84 1.68 1.61 
50 0.80 1.76 1.68 
55 0.75 1.88 1.79 
60 0.70 2.01 1.85 

 
In Table I we report a comparison between the predicted and 
measured values for the period for different values of the tilt 
angle β. The same data are graphically shown in figures 11 
and 12. 

 
 
FIGURE 11. Calculated (squares) and measured (circles) periods 
vs. the tilt angle β. 

 
 
 

 
 
FIGURE 12. Pendulum period vs. 1/sqrt(cos β). Circles: measured 
periods. Squares: calculated values. 

 
The expected dependence of the measured period on the 
inverse square root of cos β is substantially confirmed. 

The slight systematic difference between the measured 
periods and the values predicted by the model may be 
explained by considering that the thin rod is not perfectly 
rigid: it bends more and more when increasing the tilt angle 
(due to the mass weight) and this produces an increasing 
error in the measured tilt angle  
 
 
X. CONCLUSIONS 

 
We reported an example of use of real time data acquisition 
studied with the aid of simple numerical simulations. A quite 
old experiment (the pendulum motion) is refurbished by 
including the analysis of both damping and large amplitude 
oscillations allowed by the power of modern computers 
through the joint use of RTL (Real Time Laboratory) and 
spreadsheet. 

Most part of this work was presented by one of the 
authors (G.T) at the GIREP 2008 conference in Cyprus.  
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