Heat engine with finite thermal reservoirs and nonideal efficiency

Carl E. Mungan
Physics Department, U.S. Naval Academy, Annapolis, Maryland, 21402-5002, USA.

E-mail: mungan@usna.edu

(Received 14 February 2009; accepted 9 April 2009)

Abstract
The performance of an irreversible heat engine operating between two thermal reservoirs with finite, temperature-independent heat capacity is analyzed. For this purpose, a dynamic second-law efficiency is introduced and assumed to be constant. As the first-law efficiency increases from zero up to the Carnot limit, the common final temperature of the reservoirs interpolates between the arithmetic and geometric mean of their initial temperatures. The total output work and entropy change of the reservoirs are computed and related to the static efficiencies. The dynamic and static efficiencies are shown to be approximately equal to each other when the temperature of the cold reservoir is at least 10% of the temperature of the hot reservoir.

Keywords: Heat engine, thermodynamic efficiencies, work and heat.

I. INTRODUCTION
A heat engine outputs work W (over a time interval that is long compared to the period of a single cycle) by extracting heat Q_H from a hot thermal reservoir and dumping heat Q_C into a cold reservoir. According to the first law of thermodynamics, the relation between these three energy transfers is $W = Q_H - Q_C$, and one can correspondingly define a first-law efficiency for the engine as $\epsilon = W/Q_H = 1 - Q_C/Q_H$. An infinite thermal reservoir is defined to be one that can absorb or donate heat without change in its temperature. Assuming the hot and cold reservoirs are infinite, with constant temperatures of T_H and T_C, respectively, then it is a standard topic in an introductory thermodynamics course to show that the first-law efficiency cannot exceed the Carnot limiting value of $\epsilon_c = 1 - T_C/T_H$. This result follows from the second law of thermodynamics and consequently some authors [1] have introduced a second-law efficiency as $\eta = \epsilon / \epsilon_c$. An advantage of this definition is that η can vary over the entire range from 0% (in which case no work is extracted, a situation that could be described as “maximally irreversible” operation of the engine) up to 100% (when the greatest possible amount of work is output, corresponding to an engine running reversibly), unlike ϵ whose upper limit depends on the temperatures of the reservoirs used.

An interesting variation [2, 3] on a heat engine consists in computing the total output work W if the thermal reservoirs are finite (rather than infinite) with specified heat capacities (taken for simplicity to be independent of temperature over the range from T_C to T_H), when the engine is driven to exhaustion (i.e., until the two reservoirs reach a common final temperature T). A number of textbooks [4] have left this calculation as an end-of-chapter problem where both reservoirs have the same heat capacity C. In all of these references, it is assumed that the engine operates reversibly during its entire course of operation. This assumption does not imply that its first-law efficiency ϵ remains constant because that Carnot limit decreases to zero as T_C and T_H approach each other in value. Instead, it is η that remains constant, namely at a value of 100%. In the present paper, a more challenging version of the problem is analyzed in
which \(\eta \) remains constant at any value between 0% and 100%. This model more realistically describes an engine having finite fuel and whose performance is less than ideal.

II. ANALYSIS

For a real engine, the rates of energy transfer and of changes in the reservoir temperatures vary from one phase of the cycle to another, say from an adiabatic compression to an isothermal exhaust step. This detailed variation can be ignored by averaging the transfers and changes over an entire cycle, assuming the time to reach fuel exhaustion is long compared to the period of one cycle. Infinitesimal work, heat, and temperature changes in these average values will then be denoted by \(dW \), \(dQ_H \), \(dQ_C \), \(dT_H \), and \(dT_C \). The usual caveat applies that \(dW \) and \(dQ \) are not exact differentials of state functions. The standard “heat engine” sign conventions will be adopted in which \(dW \) and \(dQ \) are always positive; it is to be implicitly understood that \(dQ_H \) represents heat transfer out of the hot reservoir, \(dQ_C \) represents heat transfer into the cold reservoir, and \(dW \) represents work output by the engine. On the other hand, temperature is a function of state and will be computed by integration. It would therefore be confusing to insist that \(dT \) must be positive. As the engine runs, \(dT_H \) is negative because the hot reservoir is decreasing in temperature from an initial value of \(T_{H0} \) to the final value \(T \). Meanwhile \(dT_C > 0 \) as the cold reservoir warms up from an initial value of \(T_{C0} \) to the same final value \(T \). Taking both reservoirs to have a temperature-independent heat capacity \(C \), it then follows that

\[
dQ_H = -CdT_H \quad \text{and} \quad dQ_C = CdT_C.
\]

At any point during the operation of the engine, its dynamic\(^1\) first-law efficiency can be defined as

\[
\varepsilon = \frac{dW}{dQ_H} = 1 - \frac{dQ_C}{dQ_H} = 1 + \frac{dT_C}{dT_H},
\]

using Eq. (1) in the last step. The corresponding Carnot limiting value is

\[
\varepsilon_c = 1 - \frac{T_C}{T_H},
\]

where \(T_C \) and \(T_H \) are the reservoir temperatures at that instant. Although both of these first-law efficiencies decrease with time, their ratio (defining the dynamic second-law efficiency \(\eta \)) is assumed to be constant. Rearranging terms then leads to a differential equation for \(T_C \) as a function of \(T_H \).

\[
T_H \frac{dT_C}{dT_H} + \eta T_C = (\eta - 1) T_H,
\]

which is first order, inhomogeneous, and linear with variable coefficients. Noting that the homogeneous equation is of the power-law form, the complementary solution is \(AT_H^{1-\eta} \) where \(A \) is a constant that will be fit to the initial conditions. Furthermore, by trying a particular solution of the inhomogeneous equation that is proportional to \(T_H \), one obtains \((\eta - 1) T_H/(\eta + 1) \). Adding together these complementary and particular solutions and fitting to the initial temperatures of the two reservoirs gives

\[
\frac{T_C}{T_{H0}} = \left(\frac{T_{H0}}{T_H} \right)^\eta \left[\frac{T_{C0}}{T_{H0}} + \frac{1 - \eta}{1 + \eta} \left(1 - \left(\frac{T_H}{T_{H0}} \right)^{1+\eta} \right) \right].
\]

Next, set \(T_C = T_H = T \) to find the common final temperature of the two reservoirs in dimensionless form,

\[
\frac{T}{T_{H0}} = \left[\frac{T_{C0} + T_{H0}}{2T_{H0}} + \eta \left(\frac{T_{C0} - T_{H0}}{T_{H0}} \right)^{1/(1+\eta)} \right].
\]

This final temperature decreases monotonically with increasing second-law efficiency for fixed initial reservoir temperatures. Specifically \(T = T_{\min} \) when \(\eta = 1 \), and \(T = T_{\max} \) when \(\eta = 0 \), where

\[
T_{\min} = \sqrt{T_{C0} T_{H0}}
\]

is the geometric average of the initial temperatures, and

\[
T_{\max} = \frac{T_{C0} + T_{H0}}{2}
\]

is their arithmetic average. For example, if \(T_{C0} = 100 \text{ K} \) and \(T_{H0} = 900 \text{ K} \), then \(T_{\min} = 300 \text{ K} \) and \(T_{\max} = 500 \text{ K} \). It is convenient to use these limiting temperatures to express the common final temperature in normalized form as

\[
\tilde{T} = \frac{T - T_{\min}}{T_{\max} - T_{\min}},
\]

which according to Eqs. (6) to (8) is a function of \(\eta \) and of the initial temperature ratio \(t = T_{C0}/T_{H0} \). Like the second-law efficiency, \(\tilde{T} \) has been defined such that it can theoretically vary between 0 (in which case \(T = T_{\min} \)) and 1 (when \(T = T_{\max} \)). Similarly \(t \) has a lower limit of 0 (when \(T_{C0} \) approaches absolute zero temperature) and an upper limit of 1 (when \(T_{C0} \) is only infinitesimally smaller in value than \(T_{H0} \)). In Fig. 1, \(\tilde{T} \) is plotted versus \(\eta \) for various values of \(t \) between 0 and 1. In particular, l’Hôpital’s rule can be used to prove that \(\tilde{T} \to 1 - \eta \) as \(t \to 1 \).

\[
\]

\[
240 \quad \text{http://www.journal.lapan.org.mx}
\]

\(^1\)In analogy to the distinction between dynamic resistance (\(dV/dI \) for voltage \(V \) across and current \(I \) through a diode say) and static resistance (\(V/I \)), a distinction can be made between dynamic efficiencies (given by the incremental energy transfers at some instant) and static efficiencies (determined by the total heat and work transferred over the entire duration of the engine’s operation).
Heat engine with finite thermal reservoirs and nonideal efficiency

If the engine always runs at the Carnot limit. Using Eqs. (7) and (10), one can prove that

$$\varepsilon^*_c = 1 - \sqrt{\frac{T_{c0}}{T_{10}}}$$ \hspace{1cm} (13)

Leff [2] has pointed out the remarkable similarity of this result to the Curzon-Ahlborn efficiency of an endoreversible engine optimized for maximum power output [5, 6]. The static second-law efficiency is plotted in Fig. 2 against the dynamic second-law efficiency for the same values of t as in Fig. 1. Notice that $\eta^* \approx \eta$ for $t \geq 0.1$, the same range of values of the initial temperature ratio as discussed by Leff. The two second-law efficiencies can be shown to be exactly equal to each other in the limit as $T_{c0} \rightarrow T_{10}$ using l’Hôpital’s rule.

III. CONCLUSIONS

Previous results on the Carnot performance of heat engines using thermal reservoirs of finite heat capacity have been extended to more realistic, irreversible operation. Distinctions between dynamic (differential) and static (total) efficiencies on the one hand, and between first-law and second-law efficiencies on the other hand, have been introduced. The final reservoir temperatures, total output work, and net entropy change of the reservoirs have been computed. Calculation and graphing of many of these results (with suitable guidance) would make good homework problems in an undergraduate thermodynamics course.

REFERENCES

FIGURE 1. Plot of \tilde{T} versus η for the values of t indicated in the legend.

FIGURE 2. Plot of η^* versus η for the values of t indicated in the legend.

