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Abstract 
The performance of an irreversible heat engine operating between two thermal reservoirs with finite, temperature-
independent heat capacity is analyzed. For this purpose, a dynamic second-law efficiency is introduced and assumed to 
be constant. As the first-law efficiency increases from zero up to the Carnot limit, the common final temperature of the 
reservoirs interpolates between the arithmetic and geometric mean of their initial temperatures. The total output work 
and entropy change of the reservoirs are computed and related to the static efficiencies. The dynamic and static 
efficiencies are shown to be approximately equal to each other when the temperature of the cold reservoir is at least 
10% of the temperature of the hot reservoir. 
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Resumen 
Se analiza el desempeño de un motor térmico funcionando en un proceso irreversible entre dos depósitos térmicos 
finitos, con capacidad térmica independiente de la temperatura. Para este fin, se introduce una eficiencia dinámica de 
la segunda ley que se supone constante. Como la eficiencia de la primera-ley aumenta de cero hasta el límite de 
Carnot, la temperatura final común de los depósitos se interpola entre la media aritmética y la media geométrica de sus 
temperaturas iniciales. La producción total de trabajo y el cambio de entropía de los depósitos se calcula y se relaciona 
con las eficiencias estáticas. Se muestra que las eficiencias dinámica y estática son aproximadamente iguales entre sí 
cuando la temperatura del depósito frío es al menos el 10% de la temperatura del depósito caliente. 
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I. INTRODUCTION 
 
A heat engine outputs work W (over a time interval that is 
long compared to the period of a single cycle) by extracting 
heat QH from a hot thermal reservoir and dumping heat QC 
into a cold reservoir. According to the first law of 
thermodynamics, the relation between these three energy 
transfers is H CW Q Q= − , and one can correspondingly 
define a first-law efficiency for the engine as 

H C H1W Q Q Qε ≡ = − . An infinite thermal reservoir is 
defined to be one that can absorb or donate heat without 
change in its temperature. Assuming the hot and cold 
reservoirs are infinite, with constant temperatures of TH and 
TC, respectively, then it is a standard topic in an introductory 
thermodynamics course to show that the first-law efficiency 
cannot exceed the Carnot limiting value of c C H1 T Tε = − . 
This result follows from the second law of thermodynamics 
and consequently some authors [1] have introduced a 
second-law efficiency as cη ε ε≡ . An advantage of this 
definition is that η can vary over the entire range from 0% 
(in which case no work is extracted, a situation that could be 

described as “maximally irreversible” operation of the 
engine) up to 100% (when the greatest possible amount of 
work is output, corresponding to an engine running 
reversibly), unlike ε whose upper limit depends on the 
temperatures of the reservoirs used. 

An interesting variation [2, 3] on a heat engine consists in 
computing the total output work W if the thermal reservoirs 
are finite (rather than infinite) with specified heat capacities 
(taken for simplicity to be independent of temperature over 
the range from TC to TH), when the engine is driven to 
exhaustion (i.e., until the two reservoirs reach a common 
final temperature T). A number of textbooks [4] have left 
this calculation as an end-of-chapter problem where both 
reservoirs have the same heat capacity C. In all of these 
references, it is assumed that the engine operates reversibly 
during its entire course of operation. This assumption does 
not imply that its first-law efficiency εc remains constant 
because that Carnot limit decreases to zero as TC and TH 
approach each other in value. Instead, it is η that remains 
constant, namely at a value of 100%. In the present paper, a 
more challenging version of the problem is analyzed in 
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which η remains constant at any value between 0% and 
100%. This model more realistically describes an engine 
having finite fuel and whose performance is less than ideal. 
 
 
II. ANALYSIS 
 
For a real engine, the rates of energy transfer and of changes 
in the reservoir temperatures vary from one phase of the 
cycle to another, say from an adiabatic compression to an 
isothermal exhaust step. This detailed variation can be 
ignored by averaging the transfers and changes over an entire 
cycle, assuming the time to reach fuel exhaustion is long 
compared to the period of one cycle. Infinitesimal work, 
heat, and temperature changes in these average values will 
then be denoted by dW, dQC, dQH, dTC, and dTH. The usual 
caveat applies that dW and dQ are not exact differentials of 
state functions. The standard “heat engine” sign conventions 
will be adopted in which dW and dQ are always positive; it is 
to be implicitly understood that dQH represents heat transfer 
out of the hot reservoir, dQC represents heat transfer into the 
cold reservoir, and dW represents work output by the engine. 
On the other hand, temperature is a function of state and will 
be computed by integration. It would therefore be confusing 
to insist that dT must be positive. As the engine runs, dTH is 
negative because the hot reservoir is decreasing in 
temperature from an initial value of TH0 to the final value T. 
Meanwhile C 0dT >  as the cold reservoir warms up from an 
initial value of TC0 to the same final value T. Taking both 
reservoirs to have a temperature-independent heat capacity 
C, it then follows that 
 
 H HdQ CdT= −   and  C CdQ CdT= . (1) 
 
At any point during the operation of the engine, its dynamic1 
first-law efficiency can be defined as 
 

 C C

H H H
1 1

dQ dTdW
dQ dQ dT

ε ≡ = − = +  (2) 

 
using Eq. (1) in the last step. The corresponding Carnot 
limiting value is 
 

 C
c

H
1

T
T

ε = −  (3) 

 
where TC and TH are the reservoir temperatures at that 
instant. Although both of these first-law efficiencies decrease 
with time, their ratio (defining the dynamic second-law 
efficiency η) is assumed to be constant. Rearranging terms 

                                                 
1In analogy to the distinction between dynamic resistance ( /dV dI  
for voltage V across and current I through a diode say) and static 
resistance ( /V I ), a distinction can be made between dynamic 
efficiencies (given by the incremental energy transfers at some 
instant) and static efficiencies (determined by the total heat and 
work transferred over the entire duration of the engine’s operation). 

then leads to a differential equation for TC as a function of 
TH, 

 C
H C H

H
( 1)

dT
T T T

dT
η η+ = − , (4) 

 
which is first order, inhomogeneous, and linear with variable 
coefficients. Noting that the homogeneous equation is of the 
power-law form, the complementary solution is HAT η−  
where A is a constant that will be fit to the initial conditions. 
Furthermore, by trying a particular solution of the 
inhomogeneous equation that is proportional to TH, one 
obtains H( 1) ( 1)Tη η− + . Adding together these 
complementary and particular solutions and fitting to the 
initial temperatures of the two reservoirs gives 
 

 
1

C H0 C0 H

H0 H H0 H0

1 1
1

T T T T
T T T T

ηη
η
η

+⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞−⎪ ⎪⎢ ⎥= + −⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
. (5) 

 
Next, set C HT T T= =  to find the common final temperature 
of the two reservoirs in dimensionless form, 
 

 ( ) ( ) 1/(1 )
C0 H0 C0 H0

H0 H02
T T T TT

T T

η
η

+
⎡ ⎤+ + −

= ⎢ ⎥
⎣ ⎦

. (6) 

 
This final temperature decreases monotonically with 
increasing second-law efficiency for fixed initial reservoir 
temperatures. Specifically minT T=  when 1η = , and 

maxT T=  when 0η = , where 
 
 min C0 H0T T T=  (7) 
 
is the geometric average of the initial temperatures, and 
 

 C0 H0
max 2

T T
T

+
=  (8) 

 
is their arithmetic average. For example, if C0 100 KT =  and 

H0 900 KT = , then min 300 KT =  and max 500 KT = . It is 
convenient to use these limiting temperatures to express the 
common final temperature in normalized form as 
 

 min

max min

T T
T

T T
−

≡
−

 (9) 

 
which according to Eqs. (6) to (8) is a function of η and of 
the initial temperature ratio C0 H0t T T≡ . Like the second-
law efficiency, T  has been defined such that it can 
theoretically vary between 0 (in which case minT T= ) and 1 
(when maxT T= ). Similarly t has a lower limit of 0 (when 
TC0 approaches absolute zero temperature) and an upper 
limit of 1 (when TC0 is only infinitesimally smaller in value 
than TH0). In Fig. 1, T  is plotted versus η for various values 
of t between 0 and 1. In particular, l’Hôpital’s rule can be 
used to prove that 1T η→ −  as 1t → . 
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FIGURE 1. Plot of T  versus η for the values of t indicated in the 
legend. 
 
 
The total work output by the engine is the difference in heat 
transfers for the two reservoirs, which can be related in turn 
to their net temperature changes, 
 
 ( ) ( )H C H0 C0W Q Q C T T C T T= − = − − − . (10) 
 
Using Eqs. (8) and (9), this result can be rewritten as 
 

 
max

1W T
W

= −   where  ( )max max min2W C T T≡ − . (11) 

 
The maximum work that can be extracted is Wmax, equal to 
the product of the combined heat capacity (2C) of the two 
reservoirs and the maximum difference in the final 
temperatures. The maximum work is achieved for reversible 
operation of the engine when 1η =  so that 0T = . On the 
other hand, zero work is output for maximally irreversible 
operation of the engine when 0η = . The final temperature 
of the reservoirs is then the same as if one simply placed 
them in direct thermal contact with each other—the engine 
acts like a perfectly conducting thermal channel between 
them. To further substantiate this picture, the total entropy 
change of the reservoirs can be calculated as 
 

 
H C

H0

C0 min
ln ln 2 ln .

S S S

T T TC C C
T T T

Δ ≡ Δ + Δ

⎛ ⎞ ⎛ ⎞⎛ ⎞= − + =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 (12) 

 
This entropy change is zero for the reversible case 1η = , 
and it is maximum when 0η = . 

Finally, the total work and heat transfers can be used to 
define static first- and second-law efficiencies as 

H* /W Qε ≡  and c* * / *η ε ε≡ , respectively, where 
( )c max H0 min* W C T Tε = −  is the maximum possible static 

efficiency (for given initial reservoir temperatures), achieved 

if the engine always runs at the Carnot limit. Using Eqs. (7) 
and (10), one can prove that 
 

 C0
c

H0
* 1

T
T

ε = − . (13) 

 
Leff [2] has pointed out the remarkable similarity of this 
result to the Curzon-Ahlborn efficiency of an endoreversible 
engine optimized for maximum power output [5, 6]. The 
static second-law efficiency is plotted in Fig. 2 against the 
dynamic second-law efficiency for the same values of t as in 
Fig. 1. Notice that *η η≈  for ~ 0.1t > , the same range of 
values of the initial temperature ratio as discussed by Leff. 
The two second-law efficiencies can be shown to be exactly 
equal to each other in the limit as C0 H0T T→  using 
l’Hôpital’s rule. 
 
 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

dynamic second-law efficiency

st
at

ic
 se

co
nd

-la
w

 e
ff

ic
ie

nc
y

t = 0 0.1 0.5 1

 
FIGURE 2. Plot of *η  versus η for the values of t indicated in the 
legend. 
 
 
III. CONCLUSIONS 
 
Previous results on the Carnot performance of heat engines 
using thermal reservoirs of finite heat capacity have been 
extended to more realistic, irreversible operation. 
Distinctions between dynamic (differential) and static (total) 
efficiencies on the one hand, and between first-law and 
second-law efficiencies on the other hand, have been 
introduced. The final reservoir temperatures, total output 
work, and net entropy change of the reservoirs have been 
computed. Calculation and graphing of many of these results 
(with suitable guidance) would make good homework 
problems in an undergraduate thermodynamics course. 
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