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Abstract 

The use of linear relationships that can appear in heat transfer phenomena is described using a simple physical 
experimental situation in which the temperature evolution with time in a sample heated with low intensity continuous 
light is measured. These questions should be included in the introductory physics curricula of science and engineering 
studies to teach aspects from different branches of physics (for example thermodynamics) and mathematics (ranging 
from functional analysis to differential equations). 
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Resumen 
El uso de relaciones lineares que pueden aparecer en fenómenos de transferencia de calor es descrito utilizando una 
situación experimental sencilla en la cual la evolución de la temperatura con el tiempo es medida en una muestra 
calentada con luz de poca intensidad. Estas cuestiones podrían ser incluidas en el curriculum de Física de carreras de 
Ciencias e Ingeniería para enseñar aspectos de diferentes ramas de la Física (por ejemplo de Termodinámica) y de 
Matemática (desde análisis funcional hasta ecuaciones diferenciales). 
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There are several kinds of mathematical functional 
relationships in science between changing entities called 
variables, such as the exponential, the parabolic, the 
trigonometric, etc. One of the most common of them is the 
linear relationship, where an incremental change in one 
variable is matched by a proportional variation in the 
other. We can find several variables that depends linearly 
to one another, among others the velocity of a body and its 
displacement in which the former is constant, the applied 
voltage and the electrical resistance in a metal, the mass 
and the density of an object, the vapour pressure of a 
substance and its temperature, the gravitational and the 
electrostatic force between two charged objects and the 
inverse of the square of the distance between them, and so 
on. Linear equations can be written in the form of 
y=mx+b, in which x is the independent variable, y is the 
dependent variable, m is the slope, and b is the y-intercept. 
These equations appear to be straight lines in a xy-
coordinate graph. Often the use of the logarithmic function 
allows the linearization of mathematical equations: It is 
well known that the exponential and the potential functions 
get linear in a semi-log and in the log-log plot of the 
dependent versus the independent variable respectively, a 
fact that is very often used in data processing to obtain 
typical parameters characterizing these functions. In this 
way we find, for example, that the logarithm of the Molar 

concentration versus time is a linear graph as well as the 
plot of the logarithm of the electrostatic force between two 
charged objects versus the logarithm of the distance 
between them.  

But not always it is possible to find a linear 
relationship between the variables involved in a given 
problem, what makes sometimes difficult its solution, 
which must be found often numerically. Although the 
existence of powerful computational methods allows one 
today with relative ease to hand non-linear equations, a 
better physical insight in a studied problem can be 
obtained by means of analytical expressions, where 
particular limiting and asymptotic cases could be analyzed 
and, at the same time, could be easier programmed than 
complicated equations. Then, the use of linear 
relationships is always advantageous. 

Here we will present a typical situation that can be 
encounter in thermal physics experiments, whose 
interpretation can involves non-linear equations. We will 
shown how a carefully analysis of the problem allow one 
to find the conditions for which these expressions become 
linear, what can make easier the look for an analytical 
solution of the problem. 

Consider that a thin slab of a solid sample of thickness 
L is heated which a light beam that is uniformly focused 
onto one of its surfaces. On the opposite side, its 
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temperature can be monitored as a function of time, for 
example with a thermocouple. The variation with time, t, 
of the heat generated in the sample, Q, due to the 
absorption of light of incident power Pi (W), is given by 
[1] 

qPtQ i −=∂∂  ,                              (1) 
 
where q is a term taking into account the power losses by 
radiation, convection and conduction.  

It is well known that any temperature difference within 
a physical system causes a transfer of heat from the region 
of higher temperature to the one of lower. This transport 
process takes place until the system has become uniform 
temperature throughout. Thus, the parameter q should be 
some function of the temperatures, Tl and T2, of both the 
regions involved (we will suppose that T2> T1). It is 
denoted as the heat flux (units of W) and its form depends 
on the nature of the transport mechanism, which can be 
one of the three mentioned above or a coupling of them. 
The dependence of the heat flux on the temperature is in 
general non linear, a fact that makes quite difficult 
calculations using the energy balance equation (1).  

On the one hand we see that for radiation, i.e. the 
continuous energy interchange between separated bodies 
by means of electromagnetic waves, the net rate of heat 
flow, qrad, radiated by a body surrounded by a medium at a 
temperature T1 is given by the Stefan-Boltzmann Law [2] 
 

( )4
1

4
2 TTσAεqrad −=  ,                   (2) 

 
where σ is the Stefan-Boltzmann constant, A is the surface 
area of the radiating object and ε is the total emissivity of 
its surface having absolute temperature T2.  

On the other hand, it is a well known fact that heat 
convection takes place by means of macroscopic fluid 
motion. It can be caused by an external source (forced 
convection) or by temperature dependent density 
variations in the fluid (free or natural convection). In 
general, the mathematical analysis of convective heat 
transfer is extremely complex [3]. Often problems can be 
solved only numerically or graphically. But convective 
heat flow, in its most simple form, i.e. heat transfer from 
surface of wetted area A and temperature T2, to a fluid with 
a temperature T1 , for small temperature differences 
ΔT=T2-T1 is given by the (linear with temperature) 
Newton’s law of cooling, 

 
( ) TAhTTAhqconv Δ=−= conv12conv .        (3) 

 
The convective heat transfer coefficient, hconv (Wm-2K-1), 
is a variable function of several parameters of different 
kinds but independent on ΔT.  

The third mechanism, called thermal conduction, can 
be understood in a simple way as a microscopic down-
temperature diffusion process of heat within solids and 
stagnant fluids. The local heat flow-rate in some direction, 
r, is governed by Fourier’s Law [2] 
 

TkAqcond ∇−= .                           (4) 
 
The thermal conductivity, k (W/cmK), is expressed as the 
quantity of heat transmitted per unit time, t, per unit area, 
A, and per unit temperature gradient ∇T=∂T/∂r.  

Now we are in condition to get back to Eq. (1). If we 
want to calculate the rise of temperature, ΔT, of the back 
sample’s surface we must express the heat term of Eq. (1) 
as a function of that increase. It is given by the relationship 

 
TcVQ Δ= ρ ,                              (5) 

 
where ρ is the density, c is the specific heat and V=AL is 
the sample’s volume. Differentiation of Eq. (5) with 
respect to time and substitution into Eq. (1) leads to: 
 

0=−+
∂
Δ∂

cV
P

cV
q

t
T i

ρρ
,                    (6) 

 
where q is specified by the sum of the radiation, 
convection and conduction terms given by Eq. (2), (3) and 
(4) respectively. But we can see that, whereas sufficiently 
small convective rates of heat flow can be considered as 
linearly dependent on temperature difference (see Eq. (3)), 
the radiation and conduction dependence on the 
temperature are described by non-linear relationships - 
Eqs. (2) and (4) respectively. This non-linearity makes 
complicated the analytical solution of the energy 
conservation law as given by Eq. (6).  

But fortunately in the most often situations that we can 
find in daily live and professional practice the involved 
temperature differences are sufficient small so that, as we 
will shown later, the solution of Eq. (6) can be obtained in 
a straightforward way. Typical examples can be found 
when the sun rays irradiate our bodies, in optical 
experiments involving low intensity laser beams, in 
dynamic therapies where tissues are heated using mostly 
infrared radiation, among others. In these examples the 
temperature increases due to light absorption followed by 
light into heat energy conversion are much smaller than 
the ambient room temperature1. 

A glance at Eq. (2) shows that if the temperature 
difference ΔT = T2-T1 is small, then one should expand it 
as Taylor series around T1 obtaining a linear relationship: 

 
( ) TAhTTTAq rad Δ=−= 12

3
1rad 4 εσ                (7) 

 
If we compare this equation with Eq. (3) we can conclude 
that in this case hrad=4σεT1

3 can be considered as a 
radiation heat transfer coefficient. 

On the other hand, for one-dimensional steady state 
conduction in extended samples of homogeneous and 

                                                 
1 While absolute temperatures have different values when expressed in 
different units, temperature differences are always the same. For example, 
in the discussed physical situation, the absolute temperature, T0, of an 
object at 300 K (27 0 C) must be compared with the temperature increase 
of the same object above To of, say, ΔT=20 K = 20 0 C. 
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isotropic materials and for small temperature gradients, 
Fourier’s law can be integrated in each direction to its 
potential form. In rectangular coordinates it reads2: 

 

TAh
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T

x
TkA

xx
TTkAq cond
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cond Δ=

Δ
=

Δ
Δ

=
−
−

=
12

12 . (8) 

 
Here Tl and T2 represent two planar isotherms at positions 
x1 and x2, respectively. Using an analogy with electrical 
conduction, and introducing the concept of thermal 
resistance, RT, Eq. (8) is often denoted as Ohm’s law for 
thermal conduction [2]. Comparing with Eq. (3) we see 
that the parameter hcond has been incorporated in Eq. (8) as 
the conduction heat transfer coefficient. 

Then, substituting Eqs. (3), (7) and (8) into Eq. (6) 
leads to: 

 

0=−Δ+
∂
Δ∂

cV
PT

cL
h

t
T i

ρρ
.                 (9) 

 
A linear ordinary differential equation with constant 
coefficients, where the overall heat transfer coefficient is 
given by: 
 

h = hconv + hcond + hrad .                  (10) 
 
The solution of Eq. (9) is well known [5]:  
 

⎟
⎠
⎞

⎜
⎝
⎛ −−=Δ ↑ )exp(1

τ
t

Ah
PT i .               (11) 

 
The parameter 

h
cL

2
ρτ =  ,                                 (12) 

 
is often called the relaxation time.  

These results have been used before in a technique 
known as the temperature relaxation method under 
continuous illumination for the measurement of the 
specific heat capacity (ρc) of thin, small solid samples of 
known thicknesses [4]. It can be calculated from the τ 
value which can be obtained by the least squares fit of  
experimental curves ΔT versus t to equation (11) in the 
range of measurement times in which the exponential 
behavior is observed. This range can be determined using 
semi-log plots in order to avoid uncertainties due to 
deviations from the theoretical model.  

In the original variants the sample is supported 
adiabatically using a poor heat conductor in a reservoir 
where vacuum is performed in order to neglect heat losses 
by conduction and convection, so that the linear 
relationship given by Eq. (7) can be used in a 
straightforward manner to interpret the results. 
Experiments analyzing the influence of convection on the 
results have been also reported recently [5]. To the best of 
the author knowledge the influence of conduction have 
                                                 
2 We show for simplicity only the absolute value of qconst.. 

been only discussed in the past by solving the partial 
differential heat diffusion equation with the boundary 
conditions describing the physical problem [6].  

In summary, the phenomenological aspects described 
here suggest the possibility of dealing with them in 
advanced or introductory physics or engineering courses. 
Although non-linear phenomena and relationships are very 
often in physics this article shows one example on how 
linearization of physical formulas can be very useful in 
practice and hopefully it will aid to suggest teachers 
extend this theme to a wider spectrum of phenomena.  

On the other hand, the here described experimental 
situation can be also helpful to teach technical questions 
related to the use of graphical methods such as semi-log 
plots to handle data, as well as the physics related to the 
problem, that involves aspects of several branches such as 
heat, thermodynamics, optics, and of mathematics, namely 
ordinary differential equations, exponential functions, etc. 
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