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Abstract 
The non Hermitian Hamiltonian is solved for the two quasi-exactly solvable potential by using gauge-like 
transformation. Possible generalization of our approach is outlined. 
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Resumen 
El Hamiltoniano no Hermítico es resuelto para dos potenciales cuasi-exactamente resolubles mediante una 
transformación de norma. Se menciona una posible generalización de nuestra aproximación. 
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I. INTRODUCTION 
 
The recent growth of interest in the possibility of working 
with non Hermitian observable in quantum theory is mainly 
due to the influential letters[1, 2] where the authors have 
observed that the spectrum of certain Hamiltonians ∗= HH  
[where * denotes both complex conjugation and transpose] 
seems real, discrete and bounded below. By dropping the 
requirement of Hermiticity but of course keeping in the 
invariance by the Loentz group, they open on a significantly 
larger class of Hamiltonians satisfying a weaker hypothesis, 
namely the PT-invariance. This more flexible condition 
amounts to the commutability of the Hamiltonian H and the 
composite operator PT whose components consist of one 
linear operator P and another anti-linear operator T. It has 
been shown that, despite the lack of Hermiticity, many PT-
symmetric Hamiltonians still have a whole real, discrete and 
bounded below spectrum [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. 

The PT-symmetry is not a sufficient, or necessary 
condition for the reality of energy spectrum. This has been 
shown by several non PT-symmetric complex potential 
models [3, 12] with real energy spectrum. This idea has been 
further developed by Mostafazadeh [13]. In this noteworthy 
work he has introduced the concept of η-pseudo-Hermiticity, 

∗− = HH 1ηη where η is a Hermitian linear automorphism. It 
is observed that η-pseudo-Hermiticity is a necessary but not 
sufficient condition to ensure the reality of energy spectrum 
for a non Hermitian complex potential. The necessary and 
sufficient condition for the reality of energy spectrum of any 
Hamiltonian is that the Hamiltonian admits a complete set of 
bi-orthonormal eigenvectors. 

Most of the papers have discussed the solution of the 
Hamiltonian of type )(2 xVpH += . There are few papers in 
which the authors have studied the case of the Hamiltonian 
of the type, ),()]([ 2 xVxgpH ++= ξ  which are very 
important in quantum mechanics [14, 15]. In the context of 
studies of delocalization phenomena, the model of Hatano 
and Nelson [15] has attracted a lot of interest recently [15]. It 
is defined in one dimension by the non-Hermitian 
Hamiltonian ),()]([ 2 xVxgpH ++= ξ  where g is a real 
parameter connected to an externally applied magnetic field, 
and V(x) is a random potential. It has been demonstrated 
numerically that at a certain critical value g=gc a localized 
wave function turns into a delocalized one, and it has been 
suggested that this behavior signals the occurrence of a 
delocalization phase transition. In this present contribution, 
we have considered a general model of a non-Hermitian 
Hamiltonians which have real spectrum and have studied the 
energy spectrum. 

The organization of the paper is as follows. We have 
discussed the eigenvalue and eigenfunctions of Khare-
Mondal [16] and Khare-Mondal-like [17] potential in 
Section II. In Section III, the gauge-like transformation on 
non-Hermitian Hamiltonians have been discussed. The 
Section IV has been kept for conclusions and discussions. 
 
 
II. KHARE-MONDAL POTENTIAL 
 
We consider the generalized potential 
  

2)( ))(()( iMxSxV −−= σξ .                     (1) 
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Where 
2
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)(
xx eexS

−×+
=

σσ , 1,1 −+=σ  and M is 

positive integer. For 1=σ , 2))2cosh(()( iMxxV −−= ξ is 
Khare-Mondal potential and for 1−=σ , 

2))2sinh(()( iMxxV −−= ξ  is Khare-Mondal-like 
potential. Let us remember that 
 

( ) ( ) ( ) ,
2

S i x S xσ σπ σ⎛ ⎞− = − ×⎜ ⎟
⎝ ⎠

 

 
and 
 

)()( )()( xSxS σσ σ ×=− . 
 
When 1=σ  (1) is invariant under the transformation 

xix −→
2
π , but not PT-invariant and when 1−=σ , (1) is 

PT-invariant under the transformation xx −→  [16, 17]. The 
potential given in (1) is quasi-exactly solvable. We restrict 
our discussion up to case 4=M . The real energy 
eigenvalues and the eigenfunctions for the potential given in 
(1) are given by [16, 17] 
 
When 1=M  
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When 3=M  
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When 4=M  
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III. GAUGE-LIKE TRANSFORMATION 
 
Let the Hamiltonian be of the form 
 

)()]([ 2)( xVxSpH ++= σξ ,   )12( ==m .      (12) 
 
Applying the properties of commutator bracket 
 
{ } { })()](exp[)](exp[)( )()( xSpxifxifxSp σσ ξξ +−+

)]](exp[),([ )( xifxSp σξ+= , 

        
[ , exp[ ( )]] ,
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Multiplying by )](exp[ xif−  on both sides we get 
 

)](exp[))()]((exp[ )( xifxSpxif σξ+−  
)()()( xfxSp x∂++= σξ .                (13) 

 
We have 
 

( ) ( )exp[ ( )][ ( )]exp[ ( )] ( ),if x p S x if x p S xσ σξ ξ− + = −   (14) 
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for any natural number n. We shall now discuss a 
Hamiltonian of the type  
 

2)(2)( ))(()]([ iMxSxSpH −−+= σσ ξξ .        (15) 
 
The eigenvalue equation is 
 

)()( xExH nnn ϕϕ = .                            (16) 
 
Applying a suitable transformation  
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where  
 

)()( )( xSxf σξ −−= , remembering that  
 

[ ] )(2)( )()( xSxS
dx
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Now )(xnϕ  becomes 
 

)()(
2

exp)( )( xxSix nn ψξϕ σ ×⎥⎦
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where )(xnψ  are eigenfunctions of the potential (1). For this 
transformation, the equations (2), (4), (6), (7) and (10) will 
be the same and  from which we shall obtain the eigenvalues 
of the Hamiltonian (15) and equations (3), (5), (8), (9) and 
(11) become: 
 
When 1=M  
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When 3=M  
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When 4=M  
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Now for the case M=1 the eigenvalues of (15) are real. 
When M=2, σ=-1 the eigenvalues of (15) are real and for 
m=2, σ=1 the eigenvalues of (15) are complex. When M=3, 
σ=-1 the eigenvalues of (15) are always real and for M=3, 
σ=1 the eigenvalues of (15) are complex for |ξ| >1/2. Case 
M=4 being similar to that of case M=2. 
 
 
IV. CONCLUSION 
 
We have discussed the non-Hermitian Hamiltonian for 
Khare-Mondal and Khare-Mondal-like potential. We have 
also discussed the PT-symmetry of this Hamiltonians. 
Finally, we emphasize that the method discussed here can be 
extended to other potentials. 
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