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Abstract 
We obtain the charge conjugation operator and the positive definite operator for a Non-Hermitian matrix 
Hamiltonian and also show that this Hamiltonian is equivalent to a Hermitian Hamiltonian under a similarity 
transformation. 
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Resumen 
Obtenemos el operador de conjugación de carga y el operador definido positivo de una matriz Halmitoniana No 
Hermítica y también mostramos que este Halmitoniano es equivalente a un Halmitoniano Hermítico bajo 
transformaciones de similaridad  
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I. INTRODUCTION 

PT-symmetric quantum mechanics [1] have generated 
much interest in recent years. The main reason for this is 
that the energy eigenvalues of a number of complex 
potentials turned out to be real (at least partly), which 
contradicted the usual expectations regarding non-
Hermitian systems. This unusual behavior of the energy 
eigenvalues was attributed to the so-called PT-symmetry 
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. However, a significant barrier 
to the physical interpretation of such theories was that the 
natural metric in Hilbert space H is indefinite. Recently, 
Bender and his co-workers [11] in their very noteworthy 
work have found that the class of non Hermitian 
Hamiltonian having an unbroken PT-symmetry also 
possesses a further symmetry, called complex linear 
operator C, similar to the charge conjugation operator. The 
probabilistic interpretation of quantum mechanics can be 
restored with the construction of new inner product using 
the CPT-symmetry. The PT and CPT inner product [11, 
12] have been defined as 

φψφψ ⋅≡ TPT ][  ,  φψφψ ⋅≡ TCPT ][        (1) 

A complementary approach in constructing physically 
meaningful theories with non Hermitian Hamiltonian 

admitting real spectrum is to introduce the notion of 
pseudo-Hermiticity [13]. An operator is said to be pseudo-
Hermitian, if it is related to its Hermitian adjoint through a 
similarity transformation. The non-Hermitian 
Hamiltonians admitting real spectrum is shown to be 
pseudo-Hermitian and are invariant under an anti-linear 
symmetry which reduces to the standard PT symmetry for 
some cases. Mostafazadeh has claimed that the PT inner 
product is just the pseudo inner product and the CPT inner 
product is just the +η inner product [14] 

ηφψφψ
η

,, ≡ , ηφψφψφψ ,,, =≡ ,       (2) 

where ,., φψφψ Γ=  for all H∈φψ , ( H =Hilbert 

space, “Γ ” denotes Hermitian adjoint) and +η is positive 
definite operator. He has further shown that under a 
similarity transformation implemented by ++ = ηρ  such 
a Hamiltonian is equivalent to a Hermitian Hamiltonian h, 
according to  

1−
++= ρρ Hh .                                 (3) 

In our present article, we give a PT-symmetric 
Hamiltonian and calculate the C operator. We also obtain 
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the positive definite operator and corresponding Hermitian 
Hamiltonian. 

The plan of the paper is as follows. In Sec. II we obtain 
the eigenvalue and eigenfunctions of the matrix 
Hamiltonian. In Sec. III, we calculate the C operator for 
this Hamiltonian. In Sec. IV, we obtain similarity 
transformation and corresponding Hermitian Hamiltonian. 
Finally, Sec. V, is kept for conclusions and discussions.  
 
 
II. HAMILTONIAN WITH THREE FREE REAL 
PARAMETERS 
 
Hamiltonians with three free real parameters have been  
discussed in [7, 12]. In this paper, we consider the 
Hamiltonian 
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Where q, α, β are three free real parameters. Hamiltonian 
(4) is non Hermitian and PT-symmetric with respect to the 
parity 
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and the time reversal operator act as complex conjugation. 
The deformed hyperbolic functions are defined by  
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The eigenvalues for H in (4) are  
 

q±=±ε .                                   (6) 
 
q>0 is the region of unbroken PT-symmetry. When q>0, 
the two linearly independent eigenvectors of H are 
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With respect to the inner product (1), the followings are 
true 
 

1, =++ ψψ  ,  1, −=−− ψψ , 

0,, == +−−+ ψψψψ .                       (8) 

The eigenvectors of ΓH are *
±ψ since *HH =Γ . Setting 

*
±± ±= ψφ , we have two linearly independent 

eigenvectors of  
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III. C-OPERATOR 
 
In the Hilbert space 2CH = , ±ψ  and ±φ  form a 

complete bi-orthonormal system { }±± φψ ,  and 

I=+ Γ
−−

Γ
++ φψφψ .. , where I is the identity matrix. The 

charge conjugation and positive definite operator are given 
by [12, 14] 
 
 Γ

−−
Γ
++ −= φψφψ ..C , 
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One can easily verify the following results: 
 

12 =C , [ ] 0, =PTC , [ ] 0, =HC , ( ) ( )*CPCP =  

PC Γ
+=η ,  Γ−

++ = HH 1ηη . 
 
With respect to the inner product (2) we have 
 

1, =++ ψψ ,   1, =−− ψψ .                   (12) 
 
 
IV. SIMILARITY TRANSFORMATION 
 
The similarity transformation +ρ  of +η becomes 
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Inserting (13) into (3), the corresponding Hermitian 
Hamiltonian h is 
 

cos( ) sin( )
sin( ) cos( )

h q
β β
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,                   (14) 

                       Pq= . 
 
From (10) and (14) we have 1h PH C− = . 
 
 
V. CONCLUSION 
 
In this paper, we have obtained the charge conjugation 
operator, positive definite operator and the corresponding 
Hermitian Hamiltonian. We have found that the 
Hamiltonian (4) is coincide with the charge conjugation 
operator C and the corresponding Hermitian Hamiltonian 
(14) is coincide with the parity operator P for q=1. We 
have also shown that the energy eigenvalues depend on the 
deformation parameter q. 
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