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Abstract 
In this communication we propose a numerical determination of the electromagnetic modes in a cavity by using the 
Finite Difference Frequency-Domain Method. We first derive the analytical solution of the system and subsequently 
we introduce the numerical approximation. The cavity modes are obtained by solving an eigenvalue equation where 
the eigenvectors describe the eigenfunctions on the real space. It is found that this finite difference method can 
efficiently and accurately determine the resonance modes of the cavity with a small amount of numerical calculation. 
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Resumen 
En este trabajo proponemos una determinación numérica de los modos electromagnéticos en una cavidad por medio 
del uso del Método de Diferencias Finitas en el Dominio de la Frecuencia. Primero derivamos la solución analítica del 
sistema y subsecuentemente introducimos una aproximación numérica. Los modos de la cavidad son obtenidos al 
resolver la ecuación de eigenvalores donde los eigenvectores describen las eigenfunciones en el espacio real. Se puede 
observar que este método puede ser eficiente y preciso para determinar los modos de resonancia de la cavidad sin 
necesidad de cálculos numéricos excesivos. 
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I. INTRODUCTION 
 
Since the introduction of Maxwell equations a great effort 
has been developed to the modeling of different practical 
situations. Analytical methods are limited to simple 
geometries. For complicate geometries it is necessary a 
numerical formulation. Different numerical methods have 
been applied to analyze electromagnetic problems. For 
example, for Photonic Crystals the Plane Wave Method 
(PWM) solves the wave equation using a Fourier 
expansion of the periodic functions [1, 2]. On the other 
hand, to determine the electromagnetic field distribution 
for non-periodic problems are used methods as the Finite 
Element Method (FEM), [3, 4, 5, 6, 7] Method of 
Moments (MoM) [8, 9, 10] or Finite Difference Time-
Domain Methods (FDTD). [11, 12, 13] Usually PWM, 
FEM, MoM and FDTD allow a good approximation for 
problems with complex boundaries. 

In this work we introduce the analysis of the wave 
equation using Finite Difference Frequency-Domain 
Method (FDFD). [14, 15] We consider an eigenvalue 
equation where the electromagnetic fields are described in 

the real space. We have found that our method is flexible 
and gives good convergence with a minimal numerical 
effort. Even if the physical system is simple, the 
formulation here described can be easily extended to more 
complicate problems. 

This paper is organized as follows. Section 2 presents 
the problem and its analytical solution. Section 3 
introduces the finite difference version of the wave 
equation. In order to illustrate our ideas, first we proceed 
by solving three analytical cases and then we consider the 
general problem. In section 4 we present an analysis to 
illustrate the accuracy of the method. Finally, conclusions 
are outlined in section 5. 
 
 
II. ANALYTICAL ANALYSIS 
 
We apply the FDFD to find the resonant modes in a one-
dimensional metal cavity resonator. Several practical 
situations involve the propagation or excitation of 
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electromagnetic waves in hollow metallic container or 
cavities [16].  

The cavity is presented on Fig. 1. In panel (a) we 
illustrate an air segment d surrounded by metallic 
boundaries. The system is similar to the well-known 
infinite quantum well that we illustrate on panel (b). 

 
FIGURE 1. One dimensional cavity of width d. Panel (a) shows 
a segment of air limited by perfect metal. Panel (b) illustrates the 
similarity of the cavity with an infinite quantum well. 
 
With sinusoidal time dependence i te ω− for the fields, the 
electromagnetic wave equation is 
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The dielectric function is position dependent on the form 
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The boundary conditions are 
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= =
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The analytical solution of the wave equation is 
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In the Figure 2 we illustrate the first four eigenfunctions. 
The allowed frequencies of the resonant cavity are 
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It is convenient to write the solutions in terms of a reduced 
frequency 
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where we have introduced 
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FIGURE 2. Illustration of the first eigenfunctions of the resonant 
cavity. 
 
 
III. THE FINITE DIFFERENCE SOLUTION 
 
We consider a finite difference approximation to the 
derivative using central finite differences [11] 
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Where x d N∆ =  and N is the number of partitions of the 
cavity. The second derivative is 
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We substitute this equation in eq. (1) to obtain the finite 
difference version of the wave equation 

 
( ) ( ) ( ) ( )2 ,i i i iE x x E x E x x E xλ− + ∆ + − + ∆ =        (10) 

 
where we have introduced 
 

2d
cN
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.                                11) 

 
It is convenient to write the reduced frequency as 

 

ˆ Nω λ
π

= .                              (12) 

 
To illustrate the solutions of Eq. (10) we first consider an 
analytical treatment for the cases of N =2, 3, 4. Then we 
consider the case of arbitrary number of partitions N.  

 
A. The case of N=2 
 
The case of a partition N=2 for the cavity is illustrated in 
Fig. 3, panel (a). The finite difference wave equation for 
the point 1 2x d=  is 
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( ) ( ) ( ) ( )2 2 0 2 .E d E d E E dλ− + − =  (13) 

 
Considering the boundary conditions of Eq. (3) we find 
that the solution is  
 

2λ = .   (14) 
 
The reduced frequency is 
 

2 2ˆ 0.9003ω
π

= = .  (15) 

 
This value is our first approximation to the analytical 
solution 1ˆ 1Aω = . In order to obtain a better convergence it 
is necessary to take more partitions N. 
 

 
FIGURE 3. Discrete Partitions of the cavity of width d. Panel 
(a), (b) and (c) show the cases for N=2, 3 and 4, respectively. 
 
B. The case of N=3 
 
In Fig. 3, panel (b) is show the partition of the cavity for 
the case N=3. The finite difference version of the wave 
equation for the points ( )1 1 3x d= , ( )2 2 4x d= is 
 

( ) ( ) ( ) ( )2 3 2 3 0 3E d E d E E dλ− + − = ,    (16) 
 
and 
 

( ) ( ) ( ) ( )2 2 3 3 2 3E d E d E d E dλ− + − = .     (17) 
 
Taking account of the boundary conditions [Eq. (3)], these 
equations can be written as an eigenvalue problem 
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The solutions can be found by solving the determinant  
 

2 1
0

1 2
λ

λ
−

=
−

.                       (19) 

 
The characteristic polynomial is 
 

2 4 3 0λ λ− + = .                          (20) 
 
The solutions are 
 

1

2

1,
3.

λ
λ
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                                  (21) 

 
Using Eq. (12) we found the reduced frequencies 
 

1
3ˆ 0.9549ω
π

= = ,   (22) 

and 
 

3 3ˆ 1.6539ω
π

= ± = .  (23) 

 
We have found that the first eigenvalue is closer to the 
analytical. On the other hand, 2ˆ 1.6539ω = is far from the 
analytical solution 2ˆ 2ω = . 
 
 
C. The case of N=4 

 
The case of four partitions is illustrated in Fig. 3, panel (c). 
The wave equation for the discrete points ( )1 1 4x d= ,  

( )2 2 4x d= , ( )3 3 4x d= is  

( ) ( ) ( ) ( )2 4 2 4 0 4E d E d E E dλ− + − = ,     (24) 

( ) ( ) ( ) ( )3 4 2 2 4 4 2 4E d E d E d E dλ− + − = .      (25) 
and 
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This system can be written as a an eigenvalue problem in 
the form 
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The solutions are found by solving the determinant 
 

2 1 0
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The characteristic polynomial is 
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The solutions are 

 
1
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3

2 2,
2,

2 2.

λ
λ

λ
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The corresponding reduced frequency solutions are 
 

1
4ˆ 2 2 0.9795,ω
π

= − =      (31) 

2
4ˆ 2 1.8006ω
π

= = ,     (32) 

3
4ˆ 2 2 2.3526ω
π

= + = .      (33) 

 
The first reduced frequency has now a good approximation 
to the analytical solution. Nevertheless, for the second and 
third value we have not acceptable values. 
 

 
FIGURE 4. Numerical solution for N=8. Panel (a) show the 
comparison between analytical solution (filled circles) with the 
numerical solution (open circles). Panels (b)-(e) present the first 
four eigenfrequencies of the cavity (m=1, 2, 3 and 4). 
 
 
D. The general Case 

 
For the general case of any further number of partitions N 
we can write the system of equations 

This system is of the form AX = λX and we can solve 
with standard numerical techniques to find the eigenvalues 
(λ) and the eigenvectors (X). 
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TABLE I. Comparative table for the numerical approximations 
of the eigenvalues. In the first Column we have the analytical 
solution. On the other columns we have the numerical 
approximations for the several values of N. 
 

ˆ A
mω

 
N=2 N=3 N=4 N=5 N=6 N=7 N=8 

1 0.9003 0.9549 0.9795 0.9836 0.9886 0.9916 0.9936 

2  1.6539 1.8006 1.8710 1.9099 1.9338 1.9490 

3   2.3526 2.5752 2.7009 2.7768 2.8295 

4    3.0273 3.3080 3.4641 3.6013 

5     3.6892 4.0150 4.2346 

6      4.3445 4.7053 

7       4.9951 

 
 
IV. NUMERICAL EXAMPLES 

 
In table I we present a comparison for the approximation 
of the eigenvalues for the first N = 8 partitions values. The 
first column presents the analytical eigenvalue. The others 
columns present numerical eigenvalues. In Figure 4 we 
present the solutions that are obtained for N=8. In panel (a) 
we present with solid circles the analytical solutions and 
with open circle the numerical solution. We observe that 
the convergence is very good for the first eigenfrequency, 
m=1. For the second and third eigenfrequencies (m=2, 3), 
the convergence is acceptable. For the fourth and greater 
frequencies (m ≥ 4), we have not an acceptable 
convergence of the numerical approximations. In panels 
(b) - (e) we present the first four eigenfunctions. 

We have as the number of partitions increases. In Fig. 
5, panels (a) and (b) we present the comparison of the 
analytical (solid circle) and numerical (open circle) for 
partitions of N=20 and N=50, respectively. We find a good 
convergence for m ≤ 5and m ≤ 12, respectively. 
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V. CONCLUSIONS 
 

We have presented a numerical procedure to determine the 
resonant modes for a cavity limited by metallic 
boundaries. We have introduced a finite difference version 
of the wave equation and then we propose an eigenvalue 
problem where the eigenfunctions describe the 
electromagnetic field in the real space. We have found that 
our procedure obtains good accuracy for the first 
eigenvalues. Our future work will be devoted to apply this 
method to more complex geometries in periodic systems, 
in particular we are interested in the application of this 
method to the case of photonic crystals.  
 

 
FIGURE 5. Comparison of the analytical (filled circles) and 
numerical (open circles) determination of the eigenvalues. Panel 
(a) and (b) show the cases for N=20 and N=50, respectively. 
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