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Abstract 
Damping plays an important role in science and engineering. A mathematically simple, but physically realizable 
hysteretic damping model is still pending. In this letter, starting from the transfer function, a pseudo ordinary 
differential equation was derived by augmenting the differential order. This is a standard linear ODE, involving only 
differential terms, but integrals. 
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Resumen 
La amortiguación juega un papel importante en la ciencia y en la ingeniería. Aún está pendiente un modelo de 
amortiguamiento histerético matemáticamente simple, pero físicamente realizable. En esta carta, a partir de la función 
de transferencia, derivamos una pseudo ecuación diferencial ordinaria al aumentar el orden diferencial. Se trata de una 
EDO lineal estándar, sólo con términos diferenciales, pero integrales. 
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I. INTRODUCTION 
 
Coulomb damping is introduced in a physical textbook as 
the simplest friction model, but it is nonlinear. In contrast, 
an engineering textbook prefers to a linear model. A linear 
viscous damping model is the simplest mathematically. To 
account for the frequency dependent property of a realistic 
energy dissipating mechanism, a general-purposed 
damping model assumes that the energy loss per cycle 
varies versus the vibration frequency [1].  

Experiments have shown that the simplest form, a 
frequency independent model, could cover the damping 
property of many materials. This frequency independent 
model, or “rate-independent” damping model, has 
alternative names such as linear hysteretic damping, 
structural damping, material damping, complex stiffness, 
and internal damping. While the rate-independent damping 
model looks simple in the frequency domain, it has an 
unusual characteristic in the time domain which has 
puzzled scientists for a long time [2, 3, 4, 5, 6, 7]. The 
characteristic in question is the model has a non-causal 
response to the impulse before the impulse is applied to the 
system. Another issue is the equivalent ordinary 
differential equation (ODE), which has also fascinated 
scientists for a long time. The current consensus is this has 

been solved by using integro-differential equations [8]. 
A pseudo ODE was derived by augmenting the 

differential order in this letter. This is a standard linear 
ODE, involving only differential terms, but integrals. 
 
 
II. ODE FOR HYSTERETIC DAMPER 
 
A single-degree-of-freedom (SDOF) vibration with the 
linear hysteretic damper has a frequency response function 
as  
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where m and k are the system mass and stiffness, 
respectively. η>0 is the loss-factor.  

Assume that the excitation and response are f(t) and 
x(t), and their Fourier transform are F(jω) and X(jω), 
respectively. In light of the linear system theory, 
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that is  
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The Hilbert transform H [x(t)] is defined as 
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and in the frequency domain, Eq. (4) is equivalent to 
 

ˆ ( ) sign( ) ( )X j Xω ω ω= ,                     (5) 
 
here ˆ ( )X ω  is the Fourier transform of ˆ( )x t . In light of 
Eqs. (4) and (5), and the differential property, the time 
domain equivalent of Eq. (3) is 
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Eq. (6) contains an integral, and is not a standard ODE. 
According to the Hilbert transform definition, we have  
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Eq. (7) is easily comprehended from Eq. (5). Eq. (8) is due 
to the linear property of the differential operation and 
Hilbert transform. ˆ( )x t  can be solved from Eq. (6) as 
follows 
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Applying the Hilbert transform to both sides of Eq. (6) 
leads to (combining with Eq. (7) and Eq. (8)) 
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Thus, we have 
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Substituting Eq. (9) into Eq. (11) leads to  
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Applying differential operations twice upon Eq. (6) leads 
to 
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Substituting Eq. (12) into Eq. (13) yields 
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That is a standard ODE with an augmented order. 
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