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Abstract 
The Lagrangian, propagator and wave function for the damped harmonic oscillator with time-dependent frequency in 
the frame of Caldirola-Kanai Oscillator is evaluated. We also evaluate the uncertainty relation and the evolution of the 
Gaussian wave packet arising from the wave function. 
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Resumen 
El propagador Lagrangiano y la función de onda para el oscilador armónico amortiguado con una frecuencia que 
dependiente del tiempo en el marco de Caldirola-Kanai oscilador se evalúan. También evaluamos la relación de 
incertidumbre y de la evolución del paquete de ondas gaussiano derivadas de la función de onda. 
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I. INTRODUCTION 
 
The path integral formalism of quantum mechanics 
provides a systematic way of solving quantum mechanical 
problems and always avoids the operation methods of 
Schrödinger and Heisenberg. The path Integral is therefore 
more fundamental, more intuitive and even more flexible 
than the operator formalism. The basic and central concept 
in Feynman approach is the propagator (Green’s function) 
of the Schrödinger equation and contains all the 
information about the system under investigation [1]. The 
path integral evaluation of some simple quantum harmonic 
Oscillators have attracted a considerably attention [2, 3, 4, 
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. However, it 
was Feynman [2] and Dirac [11] and other authors [3,4,10] 
who realizes that the integral Kernel (propagator) of the 
time-evolution operator can be expressed as a sum over all 
possible paths connecting the points q1 and q2 with weight 
factor exp[(i/ћ S(q1, q2;T)], where S is the action. 

The dissipative system is usually ascribed as having a 
microscopic nature [12, 13, 14, 15, 16, 17]. The study of 
the dissipative quantum systems as a damped harmonic 
oscillator was first adopted by Kanai and Caldirola [13, 
14]. Several attempts have been made in understanding the 
dissipation system at a more fundamental level [17]. One 
of the simplest models of dissipation is the damped 
quantum harmonic oscillation with one or two degree of 
freedom in the frame work of Caldirola Kanai Oscillator 
[1, 17, 18] and its modified form [19]. 

Our primary objective of this paper will be to construct the 
Lagrangian of the modified Oscillator and use the result to 
derive the path integral for the damped system. With the 
dynamical invariant method introduced by Lewis-
Risenfeld [20-22], we derive the exact wave function for 
the one dimensional Caldirola-Kanai Hamiltonian and then 
study the wave packet evolution arising from these 
propagators [23]. 

The organization of this paper is as follows.  In section 
II, we construct the Lagrangian and the Wave function for 
the Caldirola-Kanai Oscillator. Section III focuses on the 
uncertainty relation, we determine the path integral of the 
Damped Harmonic Oscillator (DHO) and the wave packet 
in section IV. Section V gives a brief conclusion. 
 
 
II. LAGRANGIAN AND THE WAVE FUNC-
TION OF THE MODIFIED CALDIROLA-
KANAI OSCILLATOR 
 
We consider a harmonic oscillator with a time-dependent 
mass m (t) = mesinβγt

   and described by the Hamiltonian  
 

 +                [1] 

 
whose mass depends explicitly on time,  are variable 
parameter and damping factors while p and q are 
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canonically conjugate [1]. Eq. (1) reduces to Caldirola-
Kanai Oscillator [1, 13, 14, 15, 16, 17, 18] when 
exp(sin βγt) is Taylor expanded to first order in increasing 
power of βγt with the variable  parameter β → 1. The 
Lagrangian corresponding to the Hamiltonian in Eq. (1) is 
given as  
 

sin 2 2 21 1 ( ) .
2 2

tL e mq m t qβγ ω = −  


               (2)
 

 
The classical equation of motion is that of a damped 
oscillator, 
 

2( ) co s ( ) ( ) ( ) 0 .q t tq t t q tβγ βγ ω+ + =               (3) 

 
with the Hamiltonian Eq. (1), we see that the damped 
oscillator is prescribed by the time-dependent Schrödinger 
equation. 
 

ˆ( , ) ( ) ( , ).cki x t H t x t
t

∂
Ψ = Ψ

∂


              (4) 
 

Several methods [17, 21, 22, 24] have been employed in 
determining the wave functions of Eq. (4). Following the 
method introduced by Lewis and Risenfeld for an invariant 
operator for the general time-dependent Oscillator, whose 
eigenfuncton is an exact quantum state up to a time 
dependent phase factor [17, 25], we introduce a pair of 
linear operators [25]  
 

[ ],ˆ)(*ˆ)(*)(ˆ qtmptita εε 



−=
         (5) 

[ ]ˆ ˆ ˆ( ) ( ) ( ) ,ia t t p m t qε ε+ −
= − 

  
 
Where ε(t) is the solution to the classical equation of 
motion and these operators are required to satisfy the 
quantum-Liouville-Von Neumann equations 
 

[ ] .0)(ˆ),(ˆ)(ˆ =+
∂

∂ tHtata
t

i
ck



                    (6)
 

ˆˆ ˆ( ) ( ), ( ) 0 .cki a t a t H t
t

+ +∂  + = ∂


 

 
In addition, the quantity ε(t) must also satisfy the classical 
damped equations of Eq. (3) and likewise satisfies the 
Wronskian condition [19]. 
 
      ex p sin ( ) ( ) ( ) ( ) .d t t t t t i

d
βγ ε ε ε ε

β
∗ ∗   − =    
 



 

 
when the variable parameter β → 1, this then guarantees 
the equal-time commutation relation. 
 

    ˆ ˆ( ), ( ) 1 .a t a t+  =                               (8) 

 
The general solution of Eq. ( 3) is given by   

cos( ) ,t t i t i tq t e Ae Beβγ βγ− Ω − Ω = +              (9) 

 
where  

2
1

2
2

4
)(


















−=Ω

γωt  

 
Setting A = B, in Eq. (9), we get; 
 

1 ,
2

A =
Ω                                (10)

 

 
Using Eq. (10), we obtain for the under damped oscillator 
γ ≤ 2ω as 

( )cos1( )
2

t i t i tt e βγ β γε − + Ω=
Ω              (11) 

 
The solution of quantum damped oscillator in the regime 
of strong damping γ > 2ω and the critical damping ω = 0 
are given by 
 

cos( ) ,t t t tt e Ae Beβγ βγε − −Ω −Ω = +                   (12) 

 
cos
2( ) ,

t t

t A Be
βγ βγ

ε
−

= +                        (13) 
 
respectively. 

Using Eq. (10), we obtain a generalize form of Eq. (11) 
as  
 

cos

( ) ( ) ( ) ,
2

t t
i t i ttet t e t e

βγ βγ

ε θ θ
−

Ω − Ω = − + Ω       (14)
 

 
where θ(t) is the Heaviside step function and the solution 
of Eq. (14) yields 
 

  

cos
2

cos
2

( ) , 0
2

( ) , 0,
2

t t

i t

t t

i t

et e t

et e t

βγ βγ

βγ βγ

ε

ε

−

− Ω

−

− Ω

= >
Ω

= <
Ω





                  (15)

 

 
By performing analytic continuation or Wick rotation t → 
it′ on Eq. (15), we obtain the solution in the regime of 
strong damping γ >2ω as 
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cos
2

cos
2

( ) , 0
2

( ) , 0,
2

t t

t

t t

t

et e t

et e t

βγ βγ

βγ βγ

ε

ε

−

′Ω

−

′−Ω

= >
Ω

= <
Ω





           (16) 
 

The solution for the critical damping ω = 0, using Eq. (10) 
gives 
 

cos
21( ) 1 ,

2

t t

t e
βγ βγ

ε
− 

= + Ω                     (17) 
 

Eqs. (15), (16) and (17) are the general solution for the 
quantum under, over and critical damped oscillators. 

The eigenfunctions of operator equation (5) are the 
conjugate set of damped oscillator and solving equation 
(4), we obtain this wave function in the explicit form as 
[17] 
 

 
( )

!2
),(

2
14

1
sin

n
eemtx

n

tnit

n

Ω+−








 Ω
=Ψ

π

βγ

                               ( 18)
 

sin
sin 2exp ,

2 4

rt
t t

n
m e m irH q e q

h

γ
βγ Ω  Ω  × − +          

 
where Hn is the Hermite polynomials. 
 
 
III. THE UNCERTAINTY RELATION 
 
With equation (18) the wave function of the damped 
harmonic oscillator, we obtain the dispersion in co-
ordinate space for the under damping regime as 
 

       )()(*22 ttq εε=〉∆〈  

cos ,
2

t te βγ βγ−=
Ω


                  (19) 
 

and its momentum counterpart is given by 
 

)()(*22 ttmp εε
′=〉∆〈  

  
2

(2 ) cos( )1 ,
2 2

t tt e β γ βγβγσ −
 Ω  = +  Ω           

) 

 

where the  reduced  mass m′(t) is defined as [19]  
 

( ) exp sin ,dm t t
d

βγ
β

 ′ =  
                (21)

 

 
and )(tσ  is given by  

( )
1

2 2 2 2 2 2( ) cos 2 sin 2 sin ,t t t t t tσ βγ βγ βγ β γ βγ= − + (22) 
 
with the use of equations (19) – (21), we obtain the 
uncertainty relation easily as 
 

1
2

(1 ) cos( )( ) 1
2 2

t ttq p e β γ βγβγσ −  ∆ ∆ = +   Ω  



    (23)
 

 
Equation (23) give a generalized uncertainty relation for 
the modified Caldirola-Kanai oscillator, it reduces to the 
Caldirola-Kanai Oscillator when β = 1, and equation (23) 
becomes 

  

1
2 2( )( ) 1 ,

2 2
tq p γσ ′ ∆ ∆ = +  Ω   



             (24)

 

 
where  
 

 
1

2 2 2 2 2( ) cos 2 sin 2 sint t t t t tσ γ γ γ γ γ′  = − +   (25) 

 
These formulas derived reduces to these of the simple 
harmonic oscillator (SHO) when γ = 0. Figure 1.0 shows a 
plot of σ (t) for various damped factor γ = 0, 0.5Ω and 
1.0Ω. 
 

 
 

FIGURE 1. Variation of σ(t) with γt for various γ values of 0, 
0.5Ω and Ω. 

 
 
IV PATH INTEGRAL OF THE DAMPED 
HARMONIC OSCILLATOR AND THE WAVE 
PACKET 
 
The Path Integral for a particle propagator from the initial 
point (qi, ti) to the final point (qf, tf) is given by the integral 
connecting over all possible paths connecting the initial 
and the final points. 
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( , ) [ , ]

( , )
( , ; , ) ( ) ;f f

i i

q t i S q q
f f i i q t

K q t q t N Dq t e ′
= ∫ 

        (26)
 

 
where N is the normalization constant, D(q) the measure 
and the action is defined as  
 

sin 2 2 2[ ] ( ) ( ) ,
2

i

i

t t

t

mS q e q t q tβγ ω = − ∫
    (27)

 

 
and decomposing the path into a classical path q(t) and the 
fluctuation path g(t), we determine the classical path as  
 

sinsin
1 sinsin ( ) sin ( )

( ) ,
sin

fi tt
f i i t

ck

q e t t q e t t
q t e

T

βγβγ
βγω ω

ω
−

 − − −
=  

  
 

(28) 
 
where tf – ti = T. On substituting equation (28) into 
equation (27), we obtain the classical action [18, 19, 23], 
 











=

+

T
wemqS

if ttt

cl ω

βγ

sin2
][

(sin

 









 −+× TTqe f

T ω
ω
γωβγβγ sin

2
cos)1( 222sin  





 +++ − TTqe i

T ω
ω
γωβγβγ sin

2
cos)1( 222sin

 

} ( )sin ( ) sinsin2 2
1 22

4
i f fit t tt

i f
mq q e q e q eβγ βγβγγβ+− + −  

(29) 
 
Substituting equation (29) into equation (26), and 
evaluating Gaussian (Fresnel) Integral to determine the 
normalization constant, we obtain the exact form of the 
propagator for the modified Caldirola-Kanai Hamiltonian 
of equation (1) as  

 
sin ( )

[ ]( , ; , )
2 sin

i ft t
i S q

f f i i
m eK q t q t e

i T

βγω
π ω

+

= 

         (30)
 

 
We now make a few remarks about the propagator of 
equation (30) as follows: 

(i) When ω→0 and βγ→0, the propagator reduces to 
the free particle propagator. 

(ii)  

( )
1

2 2( )
, ; , exp

2 ( ) 2
f i

f f i i
f i f i

q qm mK q t q t
i t t t tπ

   −
=     − −            (31)

 

 
(ii)  When ω→0, the propagation reducing to the 
propagation of a quasi-free particle with dissipative factor 
[18] 
 

( ) 2
1

sinsin

2
1

2
,;, 








−






= −− fi ttiiff eei

mtqtqK βγβγ

βγ
π 













−
+× −− fi tt ee

im
βγβγ

βγβγ sinsin
22 )1(

2
exp



( ) ]222
if qq −×  

( )2

sinsin4 fi
f itt

m q q
e e βγβγ

βγ
−−

 + −  − 
 

 
(iii) When βγ→0, the propagator in this case reduces 
to the propagator of harmonic oscillator, 
 

2
1

sin2
),;,( 






=

Ti
mtqtqK iiff ωπ

ω
               (32)

 

 

( )2 2exp cos 2
2 sin f i f i

im q q T q q
T

ω ω
ω

  × + −   

(33)
 

 
In order to determine the Gaussian wave packet evolving 
for this propagator, equation (30), we initialize the profile 
of the packet at ti = 0, and obtain the wave packet as [2, 4, 
9, 23]. 
 

1
4 2

2 2
0 0

1 ( )( 0) exp( ),
2 4

i
i

q bqψ
πα α

  −
= − 

             (34)
 

 
where 2

0α  gives the variance of the Gaussian wave packet 
and the wave packet is choose to packed at qi = b at ti = 0. 
The kernel (propagator), equation (30) satisfies the 
Schrödinger equation with respect to (qf, tf), such that 
 

, | , ( , ) , | ,f f i i f f f f i ii q t q t H q p q t q t
t

∂
〈 〉 = 〈 〉

∂


 
 (35) 

 
In general, for any eigenket |φ〉, the wave function is given 
by 

( , ) , / ),f x t x tψ ϕ= 〈                     (36)
 

 
which is the solution of the Schrödinger equation. The 
wave packet at a time t is related to the wave packet at ti = 
0 as 

( , ) ( , ; ,0) ( ,0)i f f i iq t dq k q t q qψ ψ
∞

−∞
= ∫       (37)

 

 
On solving Eq. (37), we obtain the square amplitude as [9, 
23] 

2
2

)2(
1),(

t
f tq

πα
ψ =  

( )
2

2 2 sin

2

1 cos sin
2exp

2

t
f

t

q b e T Tβγ γβ γ ω ω
ω

α

−
   − + +      × − 
 
   (38)
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where  
 

( )
221 sin22 2 2 2 2

0 2
0

sin1 cos sin
2 2

t

t
te t t

m
βγ γ ωα α β γ ω ω

ω ωα
−     = + + +   

    



(39)

 

 
We observed in equation (38) as was observed by [23] that 
the wave packet at any time t is packed at 
 

( )2 2 sin1 cos sin .
2

t
fq b e t tβγ γβ γ ω ω

ω
−  = + + 

      (40)
 

 
The probability derives 2

),( tq fψ  in equation (38) has a 

very similar form to that of equation (23) but our 
propagator equation (30) takes a new form. 
 
 
V. CONCLUSION 
 
In conclusion, we have constructed the Lagrangian of the 
modified Caldirola-Kanai oscillator; we evaluated the 
uncertainty relation of the damped oscillator (DHO) and 
show how it reduces to the states of Simple Harmonic 
Oscillator (SHO). We have also shown how to evaluate the 
propagator of the harmonic oscillator and then studied the 
evolution of the Gaussian wave packet arising from the 
propagator. 
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