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Abstract

N e
QAVO NOMN ASCENDAM !

The Lagrangian, propagator and wave function for the damped harmonic oscillator with time-dependent frequency in
the frame of Caldirola-Kanai Oscillator is evaluated. We a so evaluate the uncertainty relation and the evolution of the

Gaussian wave packet arising from the wave function.
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Resumen

El propagador Lagrangiano y la funcién de onda para el oscilador arménico amortiguado con una frecuencia que
dependiente del tiempo en el marco de Caldirola-Kanai oscilador se evallian. También evaluamos la relacion de
incertidumbre y de la evolucién del paquete de ondas gaussiano derivadas de lafuncién de onda.

Palabras clave: Integrales Ruta de acceso, Caldirola-Kanai oscilador y la funcion de onda.

PACS: 03.65Ge, 03.63-w, 42.52-p

[.INTRODUCTION

The path integral formalism of quantum mechanics
provides a systematic way of solving quantum mechanical
problems and always avoids the operation methods of
Schrédinger and Heisenberg. The path Integral is therefore
more fundamental, more intuitive and even more flexible
than the operator formalism. The basic and central concept
in Feynman approach is the propagator (Green’s function)
of the Schrodinger equation and contains al the
information about the system under investigation [1]. The
path integral evaluation of some simple quantum harmonic
Oscillators have attracted a considerably attention [2, 3, 4,
56,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. However, it
was Feynman [2] and Dirac [11] and other authors [3,4,10]
who realizes that the integral Kernel (propagator) of the
time-evolution operator can be expressed as a sum over al
possible paths connecting the points g; and g, with weight
factor exp[(i/h S(qy, 02;T)], where Sisthe action.

The dissipative system is usually ascribed as having a
microscopic nature [12, 13, 14, 15, 16, 17]. The study of
the dissipative quantum systems as a damped harmonic
oscillator was first adopted by Kanai and Cadirola [13,
14]. Severa attempts have been made in understanding the
dissipation system at a more fundamental level [17]. One
of the simplest models of dissipation is the damped
guantum harmonic oscillation with one or two degree of
freedom in the frame work of Caldirola Kanai Oscillator
[1, 17, 18] and its modified form [19].
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Our primary objective of this paper will be to construct the
Lagrangian of the modified Oscillator and use the result to
derive the path integral for the damped system. With the
dynamical invariant method introduced by Lewis
Risenfeld [20-22], we derive the exact wave function for
the one dimensiona Caldirola-Kanai Hamiltonian and then
study the wave packet evolution arising from these
propagators [23].

The organization of this paper is as follows. In section
I1, we construct the Lagrangian and the Wave function for
the Caldirola-Kanai Oscillator. Section 111 focuses on the
uncertainty relation, we determine the path integral of the
Damped Harmonic Oscillator (DHO) and the wave packet
in section 1V. Section V gives abrief conclusion.

[I. LAGRANGIAN AND THE WAVE FUNC-
TION OF THE MODIFIED CALDIROLA-
KANAI OSCILLATOR

We consider a harmonic oscillator with a time-dependent
mass m (t) = me®™"* and described by the Hamiltonian
H(t) = ﬂv_2€_sin Byt +’ﬂ£esin ('g!,-t]QZ [1]

m

whose mass depends explicitly on time, 5,y are variable
parameter and damping factors while p and q are
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canonically conjugate [1]. Eq. (1) reduces to Cadirola
Kana Oscillator [1, 13, 14, 15, 16, 17, 18] when
exp(sin Bx) is Taylor expanded to first order in increasing
power of St with the variable parameter § — 1. The
Lagrangian corresponding to the Hamiltonian in Eq. (1) is
given as

L =einin F mg? _lmza)qﬂ_

2 2 )
The classical eguation of motion is that of a damped
oscillator,

G(t) + By co Prg(t) + w* (t)a(t) =0 ©)

with the Hamiltonian Eq. (1), we see that the damped
oscillator is prescribed by the time-dependent Schrodinger
equation.

ihﬁ\y(x,t) = H, ()P (xt).
ot 4

Several methods [17, 21, 22, 24] have been employed in
determining the wave functions of Eq. (4). Following the
method introduced by Lewis and Risenfeld for an invariant
operator for the general time-dependent Oscillator, whose
eigenfuncton is an exact quantum state up to a time
dependent phase factor [17, 25], we introduce a pair of
linear operators [25]

A(t) =#[s* ©P—me* ®)a) 5
5

a" (1) =‘T;l[e(t> p—m:(v)d],

Where ¢(t) is the solution to the classical equation of
motion and these operators are required to satisfy the
quantum-Liouville-Von Neumann equations

i%aé(t) +[am. AL m)=o. o

0 . ey
ih—a (t)+[a (t),Hck(t)]:o

In addition, the quantity ¢(t) must also satisfy the classical
damped equations of Eq. (3) and likewise sdtisfies the
Wronskian condition [19].

nex ;E%sinﬂytj[é*(t)g(t) —&M)e @) ] =i.

when the variable parameter S — 1, this then guarantees
the equal-time commutation relation.

[a.a®]-1 ®
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The genera solution of Eq. ( 3) isgiven by
q(t) _ e—ﬁytcosﬂ;/t I:Aeigt + Be—iQt:|’ (9)

oo-[or- (3]

Setting A= B, in Eq. (9), we get;

where

A=—,
2nQ (10)

Using Eg. (10), we abtain for the under damped oscillator
y<2was

1 e—( PBrtcosBiyt+iQt)

)= —
“O= T (1)

The solution of quantum damped oscillator in the regime
of strong damping y > 2w and the critical damping w = 0
are given by

e(t) =e e [Ae’“‘ + Be’“‘], (12)
—prtcosprt

S(t) = A+ Be 2 , (13)

respectively.
Using Eq. (10), we obtain a generalize form of Eq. (11)

as
e—ﬂytcosﬂyt . .
£(t) = —| 9(-)é™" +o(t)e ™" |,

=155 10D e ] "

where (t) is the Heaviside step function and the solution
of Eq. (14) yields

—Bytcospyt

e ? it
e(t)=————e"™t>0
2nQ

—prtcospyt
e ? it

V2rQ
(15)

By performing analytic continuation or Wick rotation t —

it” on Eqg. (15), we obtain the solution in the regime of
strong damping y >2w as
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—PBrtcospyt
e 2
‘O="Tra

—Prtcospyt
e 2
() =

N 2R

e’ t>0

e’ t<0,

(16)

The solution for the critical damping » = 0, using Eq. (10)

gives
_Prtcosppt
L {1+e 2 }

‘O

(17)

Egs. (15), (16) and (17) are the general solution for the
quantum under, over and critical damped oscillators.

The eigenfunctions of operator equation (5) are the
conjugate set of damped oscillator and solving equation
(4), we obtain this wave function in the explicit form as

(17]

mQes" At %e*i(m%)m
)

mQes" - mQ ir
H ex| _esm/;'yt ARe 2t ,
* [ h q] p{ (271 +4hjq }

where H,, is the Hermite polynomials.

an (th) = [
(18)

[11. THE UNCERTAINTY RELATION
With equation (18) the wave function of the damped
harmonic oscillator, we obtain the dispersion in co-
ordinate space for the under damping regime as

(AQ®) = A * (D)&(t)

— i e*/fﬂ cosfyt ,
20 (19)

and its momentum counterpart is given by
(AP?) = RPmlé* (t)e(t)

_Q
2h

1+(ﬂ7/o-(t)j2:|e(2ﬂ)7tcosﬂ7/t1 )
2Q

where the reduced mass m'(t) is defined as[19]

m(t) = exp(%sinﬂytj,
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and o (t) isgiven by

o(t)= ((:052 Lyt —2pytsin2pyt + Py sin? ﬂ}/t)}/2 1 (22)

with the use of equations (19) — (21), we obtain the
uncertainty relation easily as

(AgAp) = g{u (MH% e

20 29)

Equation (23) give a generalized uncertainty relation for
the modified Caldirola-Kanai oscillator, it reduces to the
Cadirola-Kanai Oscillator when g = 1, and equation (23)

becomes
2 1%
(Aqu)%{l{ﬂt)” ,

2Q
(24)

where
. _ . 2 0.2 %
o'(t) =[ cos’ yt— 2yt sin 2yt + y 7 sin’ yt | (25)

These formulas derived reduces to these of the simple
harmonic oscillator (SHO) when y = 0. Figure 1.0 shows a
plot of o (t) for various damped factor y = 0, 0.5Q and
1.0Q.
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FIGURE 1. Variation of o(t) with yt for various y values of 0,
0.5Q and Q.

IV PATH INTEGRAL OF THE DAMPED
HARMONIC OSCILLATOR AND THE WAVE
PACKET

The Path Integral for a particle propagator from the initial
point (g, t;) to the final point (g, t;) is given by the integral
connecting over al possible paths connecting the initial
and the final points.
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(af t5) i o
K(G.t:0,t) = NL:,t.) DQ(t)eAS[qq]; (26)

where N is the normalization constant, D(q) the measure
and the action is defined as

Sql = g j: [P (t) -’ (1) |,

and decomposing the path into a classical path q(t) and the
fluctuation path g(t), we determine the classical path as

qd((t):{ sinwT

g, sino(t-t) - e sinw(tl—n}_s-nm

(29)

where t; — t; = T. On substituting equation (28) into
equation (27), we obtain the classical action [18, 19, 23],

sin B (t; +t;
m| we
Jay1= E(—]

snoT
x {es‘”ﬁ”qf @+ yzﬂz)[cosz -2 sin a)T}
20
+e 3" g? L+ yzﬁz)[cosa)T + zlsin a)T}
a

_ zqqzeénﬁy(ti+tf)} N mi’ﬂ ( e _ et )

(29)

Substituting equation (29) into equation (26), and
evauating Gaussian (Fresnel) Integral to determine the
normalization constant, we obtain the exact form of the
propagator for the modified Caldirola-Kanai Hamiltonian
of equation (1) as

K(q t‘q- t-): meénﬂy(l‘+tf)e%s[q]
CreR N TN o rinsineT (30)

We now make a few remarks about the propagator of
equation (30) as follows:
(i) When »—0 and Sy—0, the propagator reduces to

the free particle propagator.
(i)
K(q t,:q t)—[ m ]%expl:ﬂ(Qf_Qi)z}
[RAI R EL I Al RS
27in(t, —t) 2h t, -t (31)

(i) When «—0, the propagation reducing to the
propagation of a quasi-free particle with dissipative factor
(18]
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% %
m
K(qf’tf;qi’ti):(zﬂihj (e—sinﬂytlﬂ_}/ —gnﬂﬂf)

e

X eXp{g; 1+ 72ﬂ2)(es”‘ﬂ"'ﬂ—}/e_s"ﬂﬂ'j X ((ﬁ - qiz)ZJ

+%[( e—sinﬂytiﬁ_y snan j(qf —4 )2

e

(iii) When Sy—0, the propagator in this case reduces
to the propagator of harmonic oscillator,

%

mao

K toig.t)=| —————

(Qf’ f1q|'|) (Zﬂlhsnaﬂ—) (32)

Xexp{zhis;%[(qf +7)ooseT -2, J} (33)

In order to determine the Gaussian wave packet evolving
for this propagator, equation (30), we initialize the profile
of the packet at t; = 0, and obtain the wave packet as[2, 4,
9, 23].

% e
v(a 0)—[2 lzJ exp(- {90
o, 4o (34)

where 2 gives the variance of the Gaussian wave packet

and the wave packet is choose to packed at g, = b at t; = 0.
The kernel (propagator), equation (30) satisfies the
Schrédinger equation with respect to (g, t), such that

.. 0
Iha<qf !tf |q| vti> =H (Qf » Py )<Qf ltf |q| ,ti> (35)

In generdl, for any eigenket |$), the wave function is given
by
l//f(X,t)=<X,t/(0), (36)

which is the solution of the Schrddinger equation. The
wave packet at atimet isrelated to the wave packet at t; =
Oas

) =wdik f’f;i’o i’o
p@t)=[" dak(g.t;;q,0p(q,0) -

On solving Eq. (37), we obtain the square amplitude as [9,
23]
2 1 2

 (27e)

2
|:qf - b(1+ ﬂz;fz)(a’s‘”/’yt [cosa)T +2}/sina;TH

v ()

0]
xexp

2a?

(39)
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where

1. 2 : 2
a? :ozg(1+/32y2)2eE " [COSlesinwtj + hsma)z
20 2mwa
(39)

We observed in equation (38) as was observed by [23] that
the wave packet at any timet is packed at

q; = b(1+ ﬂzyz)e’s”ﬁ" (coswt +2 sin a)tj.
2w

(40)

The probability derives ‘,,,(qf ,t)‘z in equation (38) has a

very similar form to that of equation (23) but our
propagator equation (30) takes a new form.

V. CONCLUSION

In conclusion, we have constructed the Lagrangian of the
modified Caldirola-Kanai oscillator; we evaluated the
uncertainty relation of the damped oscillator (DHO) and
show how it reduces to the states of Simple Harmonic
Oscillator (SHO). We have also shown how to evaluate the
propagator of the harmonic oscillator and then studied the
evolution of the Gaussian wave packet arising from the

propagator.
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