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Abstract 

We present a review of 3-tensor potential Labc proposed by Lanczos for the Weyl conformal curvature tensor. We show 
the role that plays Lanczos tensor in General Relativity for theoretical physics postgraduate students. In the same way 
that the electromagnetic vector potential can be used to compute the Maxwell field, the Lanczos potential can also be 
mployed to compute the Weyl curvature tensor of a gravitational field. e
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Resumen  
Realizamos una revisión del potencial 3-tensorial propuesto por Lanczos Labc para el tensor de Weyl de curvatura 
conforme. Mostramos el papel que juega el tensor de Lanczos en Relatividad General para estudiantes de posgrado de 
física teórica. En la misma forma que el vector potencial puede ser usado para calcular el campo de Maxwell, el 
potencial de Lanczos también puede ser empleado para calcular el tensor de curvatura de Weyl de un campo 

ravitacional. g
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I. INTRODUCTION 
 
In the recent years there has been a renewed interest in the 
3-tensor potential Labc proposed by Lanczos for the Weyl 
curvature tensor [1]. However, in the General Relativity 
and gravitation most popular textbooks, like Misner, 
Thorne and Wheeler [2], Wald [3], Hawkings et al. [4], 
Weinberg [5], Penrose and Rindler [6], Stephani et al. [7], 
etc. there is not any treatment about Lanczos potential 
theory. Nevertheless, it is important in theoretical and 
physical aspects because we acknowledge that Einstein 
equations can be written in terms of the covariant 
derivative of Lanczos Potential in its Jordan form; also, 
there is a possibility of the existence of an Aranov-
Bhom’s gravitational quantum equivalent effect to the 
traditional one [8]. In the educational field, the 
importance of Lanczos potential is clear because of its 
analogy with the electromagnetic 4-vector potential. 

Our aim in this work is to present an heuristic point 
of view of Lanczos potential that reaffirms the last 
mentioned analogy between gravity and 
electromagnetism. This is focused to postgraduate 
General Relativity students. The paper is organized as 
follows: in Sect. II, we present some algebraic properties 
of Lanczos potential; in Sect. III, we mentioned the 
physical interpretation of Lanczos potential; en Sect. IV, 

we show the method for the vacuum space-times; in Sect. 
V, we show a brief example for Schwarzschild space-time. 
Finally, in Sect. VI, we present our conclusions. Appendix 
A.I is devoted to spinor formalism. 
 
 
II. ALGEBRAIC PROPERTIES OF LANCZOS 
POTENTIAL 
 
In General Relativity, we often need to work in a given 
space-time, or to derive one in the form of an exact 
solution to Einstein’s gravity equations. In 1962 Lanczos 
suggested an auxiliary potential [9]; through it and the 
covariant derivative, we can obtain the conformal 
curvature Cabcd of decomposition of Riemann curvature 
tensor 
  (1) ,R C E G= + +abcd abcd abcd abcd

where the following abbreviations are followed 
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e four (gauge a
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be ve e 
]. The 

omplete form of the tensorial equation for Lanczos 
otential is 

),bcg

L L= − + L

where we define  
 ; ;

r r
ad a d r a r dL L L≡ − . (4) 

The above equation is equi

 
* * * * .L L− −

 
[ ; ] [ab c d cd aW L L= + ; ]b
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3Initially, an arbitrary tensor
components, but further we have t

s 
o impose the following 

4
 ,abc bacL L= −

lgebraic conditions of Lth anczos) 
 0,r

a rL =  (7) 
and the dual four conditions 
  (8) * 0,r

a rL =
or equivalently 
 0,abc bca cabL L L+ + =  (9) 
then, his initially sixty four degrees of freedom are 
reduced to sixteen. Further six differential Lanczos gauge 
conditions  
 ; 0ab rL =

fact, the Lanczos potential also admits a wave equa
], the tensorial form of this wave equation has prov

ry useful to find Lanczos potential by som
teresting methods due to Velloso and Novello [3

In tion 
[2 ed to 

in
c
p
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III. PHYSICAL INTERPRETATION OF 
L ZOS POTENTIAL 
 
The role of Lanczos potential Labc with respect to the 
Weyl tensor Wabcd is the same that plays the vector 
potential Aa for the Maxwell tensor Fab. Then, in the same 

way that we derive the electromagnetic tensor Fab from Aa, 
we can derive the electromagnetic field  as

; ;( ) ,ab ab a b b aF W A A A= = −  (12) 
we can also derive the Weyl curvature tensor from a 
potential; nevertheless, this could not be a 

agnetic case, instead it 
e Lanczos potential L

 equation (3). 

vector potential 

nsor called th abc ,
properties, see

as in the electrom must be a 3-rank 
te  with similar 

Also, assuming that some space-time M admits an 
electromagnetic field Fab = - Fba , then this field obeys 
certain rules. For example 

 
; ; ;

;

0,

.
ab c bc a ca b

cd c
d

F F F

F J

+ + =

=
 (13) 

Therefore, the gravitational Lanczos potential Labc 
physically corresponds with the electromagnetic vector 
potential Aa. In a certain point of view, A  could be 

erived in a covariant
a

 way to get the electromagnetic 
ab (as is suggested by (12)). Also, the Lanczos 

otential could be derived in a covariant way to get the 

quation of (13)) corresponds to (11) Lanczos 

d 
 generate a Lanczos 

otential with the fo
a

4) 
nd also 

the fo

a

d
tensor F
p
Weyl gravitational field as it is correspondingly suggested 
by (12). The source of the electromagnetic equation 
second e(

equation with sources. 
 
 
 
IV. METHOD FOR THE VACUUM SPACE-
TIMES 
 
If we have a space-time with a global Killing vector fiel
ξa [11], it is sometimes possible to
p : llowing method

If ξ  is a non-null Killing vector that satisfies Killing 
equation 
 ; ; 0,a b b aξ ξ+ =  (1

is hyper surface orthogonal vector (i.e. 
llowing mathematical relation) 

a satisfies 

 [ ; ] 0.a b cξ ξ =  (15) 
Then, it is possible to take an unit vector u  from the group 

f motions, such that o

 2
1

, 0,
1

aa
a au s s

ξ
ξ ξ ξ

ξ
= = > =

−

⎧
⎨
⎩

. (16) 

u
guarantees that u  is 

 
Killing eq a

less and sh
δ

Thus, the 
expansion-

uation (14) 
ear-free, i.e. 

( )(a a bu u uδ ) 0,bu u( ; )a b m m n n− −

;a b a bu sa u= , (19) 
where we have defined the first curvature vector of the 
group of congruence (also called and known as 

=  (17) 
and by means of the hyper surface orthogonallity 
condition of ξa we have 
 [ ; ] 0,a b cu u =  (18) 
therefore, 
 

Lat. Am. J. Phys. Educ. Vol.1, No. 1, Sept. 2007 79 http://www.journal.lapen.org.mx 
 



César Mora and Rubén Sánchez 

   

acceleration) to be  group of 
otions eve

a=(ln(1/ξ
given by 

aa=ua;bub which for all
n those not satisfying (18), this i

)),a. Then, a candidate of Lanczos 
m s a gradient 
a potential is 

 1
3

( )

( ) ,
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a bc b ac

L a u a u u

s a g a g

= −

− −
 (20) 

which satisfies (6), (7) and (9). Then, verifying the 
Lanczos gauge (10) and the (3) condition of the potential, 

e can fix completely our candidate as a full-fledged 
anczos potential. We can trace the spinorial analog of 

Schwarzschild space-time. 

E. 
 
Now, we sh 11] using 

e Schw
 as follows  

w
L
(3) to fix our candidate. In the following section, we show 
an example for the 
 
 
V. AN EXAMPLE FOR THE SCHARZSCHILD 
SPACE-TIM

ow a brief example of the method [
arzschild line element in the coordinath tes, (t, r, θ, 

ø)

 

2
2 22

1
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M dr
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The time-like Killing vector 0
a aξ δ= has squared norm  
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clearly this vector fields are hypersurface-orthogonal. If 
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then  
 

u
ξ

b 5) 
o
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w, with the velocity vector ua and the acceleratn ion aa, 

it is possible to write a Lanczos potential in the following 
form 
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we continue the present example employing the nu
ided by Kinnersley, which are 
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Here, the non-vanishing spin coefficients and Weyl scalar 
components are 

 

1
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that illustrates the use 
f the null tetrad and spinorial coefficients from the 
ewmann- Penrose formalism [10]. 

4 5

6 7, .

abc abc

a b c a b c

abc abcL L m n m L L m n n= =
This is an example of a Lanczos potential that has been 
computed from the Novello and Velloso’s Lanczos 
gravitational potential 3-rank tensor 
o
N
 
 
VI. CONCLUSIONS 
 
It has been found that the method of Novello and Velloso 
[10] described in section IV, could be used to compute a 
Lanczos gravitational potential, and it has been pointed out 
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 in this method to 
chieve our objective of showing an easy and convenient 
ay to get this important quantity. 
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that we can use it in the derivation of the Weyl curvature 
tensor for the simple case of a Schwarzschild spherically 
symmetric vacuum space-time. The Lanczos tensor is 
important in the derivation of the Einstein field equations 
in his Jordan form. We have used the spin-coefficients and 
the Newmann-Penrose formalism
a
w
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A.I NEWMANN-PENROSE C
F
 
In this section we show the symbology employed by 
Newmann and Penrose to denote several spin-coefficients 
that we have already computed for the vacuum space-time. 
This notation has been proved to be very useful. The 
Christoffel symbols of secon
o
 

,c C C C
ab BBAAB AABCγ ε γ εΓ = +  (34) 

f the 
null tetrad in terms of the canonical spinorial frame  

 

where we followed the convention of decomposition o

,

, ,

a A A a A A

a A A a A A

m o m o

l k

,ι ι= =

= =
 (35) 

o oι ι

the basis spinors Ao  and Aι  from a dyad in the sense that 
tisfies the norm roduct: sa r palized relation of inne

A A B 1,A ABo oει ι= =  

and ABε  is the “local metric” of the spin space SL(2,C), 
which has the com

 

inor indices are raised and lowered according to the 
les 

ponents 
0 1AB

ABε ε= =
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ru
 , .A AB B

B A ABα ε α α ε α= =  (36
The spin inner product is antisymmetric in the sen

) 
se that 

the spinorial ind e, i.e. 

 

ices A, B,… do not commut
,AB BA

A A

A B A A

α ε ε α

.AB A Aε α β α β α β= = −

≠
 (37) 

he diagrams of Newmann-Penrose are the following 

 Symbology of Newmann-Penrose for the spinor 

AAB

T
 
TABLE I.

Cγ . 

\
C

A A B
 

0
0

 1
0

 1
0

 1
1

 

0 0  ε  κ−  'τ−  'γ  
1 0  α  ρ−  'σ−  'β  
0 1  β  σ−  'ρ−  'α  
1 1  γ  τ−  'κ−  ε  

 
TABLE II. Symbology of Newmann-Penrose for the spinor 

AABCγ . 

\A A B C  0 0  1 0 1 0=  1 1  
0 0  κ  'ε γ=−  'π τ=−  
1 0  ρ  'α β=−  'λ σ=−  
0 1  σ  'β α=−  'μ ρ=−  
1 1  τ  'γ ε=−  'ν = κ−  
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There are also two more tables for the complex conjugate 
spin-coefficients symbols.  

Notice that in these tables the second and third rows, of 
the complex conjugate of spin-coefficient  and 

 are interchanged. Because of the obvious relations 

C
AABγ

AABCγTABLE III. Symbology of Newmann-Penrose for the spinor 

. C
AABγ

 
_______

,C C
AAB AAB AABγ γ γ= =\

C
A A B

 0
0

 1
0

 1
0

 1
1

C  (38) 

0 0  ε  κ−  'τ−  'γ  
0 1  α  ρ−  'σ−  'β  

1 0  β  σ−  'ρ−  'α  
1 1  γ  τ−  'κ−  'ε  

and correspondingly 

 
_______

.AABC AABC AABCγ γ γ= =  (39) 
 (We also can think that the capital latin spinorial indices 

with dot  can not see the spinorial indices without 
a dot  and then, can permute with this last set 
without interference. But the capital indices without the 
dot 

, ,...A B
, ,...A B

,...,A B  can not commute between them, because in 
doing so, they could interfere with the value of the 
spinorial quantity.)  

TABLE IV. Symbology of Newmann-Penrose for the spinor 

AABCγ . 

\A A B C  0 0  0 1 1 0=  1 1  
0 0  κ  'ε γ= −  'π τ= −  
0 1  ρ  'α β=−  'λ σ= −  
1 0  σ  'β α=−  'μ ρ=−  
1 1  τ  'γ ε= −  'ν κ=−   
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