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Abstract 
Samaras are highly specialized forms of “flying” fruits that some species of trees produce for the dispersal of their 
seeds in their environment. The flight of a samara is always a highly elaborated form of mechanical motion, and 
an excellent opportunity for application of both Intermediate and Analytical Mechanics to a natural phenomenon. 
One of the more interesting cases, the passive flight of Triplaris Caracasana, which is a combined motion of 
vertical translation and simultaneous rotation, is presented here. A Newtonian Mechanics model is elaborated, and 
successfully confirmed, using a variety of different and accurate laboratory measurement techniques including one 
based on the chopping a laser beam. The motion of the flying samaras is indeed appealing and should be found of 
great interest for Analytical Mechanics and Fluid Mechanics and as shown here for Intermediate Mechanics 
courses. 
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Resumen 
Las samaras son frutos “voladores”, altamente especializados, que algunas especies de árboles producen para 
lograr dispersarse en su medio ambiente. El vuelo de una samara es siempre una forma muy elaborada de 
movimiento mecánico, y una excelente oportunidad para la aplicación de la mecánica Analítica o de la Mecánica 
Intermedia  a un fenómeno natural. En este trabajo se presenta uno de los casos más interesantes,  el vuelo 
“pasivo” de la samara del árbol de nombre científico Triplaris caracasana, vuelo que es  una combinación de 
traslación vertical y rotación simultanea. Hemos elaborado un modelo basado en Mecánica Newtoniana de dicho 
vuelo, el cual hemos además validado, y confirmado, mediante la aplicación de diferentes  técnicas 
experimentales, que incluyen una basada en la “interrupción periódica” (el llamado chopping en  Inglés) del haz 
de un laser. El movimiento de las samaras voladoras es sin duda atractivo y debe resultar de gran interés para la 
Mecánica Analítica y la Mecánica de Fluidos y también, como lo demostramos aquí, para la Mecánica Intermedia. 
 
Palabras clave: Enseñanza de la Mecánica Clásica, Mecánica de Fluidos, movimiento de la Samara, Mecánica 
Newtoniana.  
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I. INTRODUCTION  
 
A number tree species, among them Triplaris caracasana 
(vulg. Palo de María), Swetenia mahogany (vulg. Caobo 
de Santo Domingo) and Acer macrophyllum (vulg. Maple) 
[1, 2] have developed rather special ways for dispersing 
their seeds in their environment. A tree of the venezuelan 
trade-wind forests, known by its scientific Latin name 
Triplaris, is the subject of the present work. It disperses its 
seeds by means of a three-winged “flying” fruit, or samara 
(Fig. 1) that rotates quickly in air, while falling to ground 
from the top of the tree. It is a motion that indeed looks 
spectacular, particularly when groups of twenty or more 
samaras are observed simultaneously falling to ground, 
from the same tree canopy. Dispersal by samaras is indeed 
very appealing and easily awakes the curiosity of 

observers.  Fig. 1 is a technical drawing of the Triplaris 
samara in vertical position, with its three arched wings 
inclined at a given angle with respect to the vertical 
symmetry axis of the samara. The wings of the samara are 
almost symmetrically displayed (120° apart) about the 
vertical axis of symmetry of the bulb. The bottom portion 
of the samara is an ellipsoidal (almost spherical) body, 
called the bulb, inside of which the seed of the tree is 
enclosed. Caobos and Maple trees disperse in similar ways 
to Triplaris, but their samaras are single-winged, not three-
winged, and of course much simpler to study. In the 
outskirts of Caracas, and in mountains and valleys all 
along the coastline of Venezuela, several of these species 
of trees, that use winged samaras for their dispersion, are 
often encountered. But they are not only to be found in 
Venezuela, they have certainly been found in the southern 
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coastal forests of Ecuador, and have been even reported in 
Bolivia and Brazil, south of the Equator. Another 
remarkable case of passive flying samara is the amazing 
single-winged samara of the tree of Latin name Zanonia 
macrocarpa, that grows in South-East Asia and the 
Phillipines Islands. The samara of Zanonia practically 
surfs in air when dispersing. The motion of the “flying” 
samaras is indeed a subject that many observe since their 
childhood, but that nonetheless would probably remain a 
complete mystery for their entire life. Asked by colleagues 
and students to explain the motion of the Triplaris samara, 
we construct in this work a theoretical model for its 
“flight” which we have also successfully submitted to 
experimental tests (Section V).  
 
 

 
 
FIGURE 1. The samara of Triplaris Caracasana in vertical 
position, as it falls to ground. The three arched and cambered 
wings are almost equally inclined with respect to the main axis of 
symmetry. Note the central nervature along each wing, and the 
bulb at the bottom, that contains the seed of the tree. 
 
Our model was initially based on analytical mechanics [1] 
but, as shown below, a simpler formalism based on 
Newton Second Law may also be used to explain the 
translational and rotational motions. Below we present 
both our mathematical model and the experiments that 
successfully confirm the model predictions. Hopefully, 
college physics teachers and university lecturers can use 
our model, and cases similar to Triplaris, to enrich their 
classroom presentations of Newtonian mechanics, and 
therefore the list of examples of application of physics 
knowledge to day life. Important science museums across 
the world have displays of flying samaras. 
 
 
II. PHYSICS MODEL OF THE SAMARA 
 
The dispersal flight of a Triplaris samara is an appealing 
natural phenomenon with well-defined physics features, 
albeit one difficult to explain. The peculiar shape of the 
samara (Fig. 1), and the possible existence of a cross 
coupling of its slow vertical motion with its simultaneous 
rotational motion, makes it difficult to develop a 
successful analytical model. When dispersing, Triplaris 

samara is seen to fall slowly to ground, while quickly 
rotating, as a consequence of its aerodynamics interaction 
with the air, an interaction in fact driven by the force of 
gravity, as shall be explained below. As in similar cases of 
objects falling in air, under the simultaneous action of 
gravity and some retarding force, we soon noticed – after 
performing simple kinematics experiments in the 
laboratory – that there is in fact a final constant 
translational speed of the samara, the samara terminal 
speed. The main axis of symmetry of the samara 
practically conserves the vertical orientation all along its 
descent to ground. This vertical orientation of its axis is 
conserved even when the samara is being horizontally 
translated by mild crosswinds. This is simply a 
consequence of the conservation of angular momentum 
and the particular morphological design of the samara. 

At first sight, however, the motion to ground of a 
samara would be either uniform, or a descent with a given 
acceleration. The passive structure of samaras, i.e. the lack 
of an active engine, or of self-propelling means, suggests 
that accelerated motion should be considered with care, or 
at least considered very improbable. The sought analytical 
model for the samara flight should also clarify the linking 
between its rotational motion and its translation. 

Since a dispersing samara starts its motion to ground 
from rest, and since it finally reaches a constant terminal 
translational speed, as experimentally measured in this 
work (see Section III), it follows that there must be a 
transient motion regime in which the samara moves with 
both vertical and angular time-dependent accelerations. 
The complex morphology of Triplaris samaras (Fig. 1), 
their singular motion, plus the apparently large number of 
degrees of freedom involved in that motion, suggests the 
application of Analytical Mechanics, or even advanced 
Aerodynamics theory, in order to derive a sound physics 
model for it. The special form of the arched wings (Fig. 1), 
which in addition are also cambered, and laterally tilted a 
small angle (Fig. 5), suggests the application of 
sophisticated formalisms used in advanced aerodynamics 
design [3, 4] such as the Kutta-Zhukovsky formalism or 
the Navier-Stokes Theorem. As shown below the sought 
theoretical model can be greatly simplified if some 
reasonable simplifying assumptions are made. Such 
assumptions allowed us to simply apply Newton Second 
Law: F= ma, where m is the mass of the samara and a its 
acceleration. Our physics model is thus based on a set of 
simplifying assumptions, for instance, when a Triplaris 
samara descends to ground its axis of rotation is seen to 
remain essentially vertical and coincident with its main 
symmetry axis all along, therefore our model starts with 
the assumption that the samara behaves as a rigid body 
which rotates with respect to such vertical axis. To further 
simplify the mathematics, the camber and the arching of 
the wings are also neglected in our model, not so the small 
lateral tilt of the wings. This amounts to a model with three 
flat, and equally inclined and tilted wings, of constant 
width a. In spite of these seemingly extreme 
simplifications, our model below has proved to be rather 
successful. 
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FIGURE 2. Natural coordinates used in the physics model of the 
passively flying samara: z is the vertical position, and θ  is the 
azimuth angle of rotation measured from the reference x-axis up 
to the tip of one of the samara wings. Two opposite torques act 
on the samara: the first torque τrot promotes its rotation; the 
second is the retarding or dragging torque τdrag. 
 
 
III. MODEL OF THE VERTICAL MOTION 
 
The natural coordinates for the description of the vertical 
motion of the Triplaris samara (Fig. 2) are the vertical 
position z measured from the departing position, and the 
azimuth angle θ of rotation, measured on a horizontal 
plane from an arbitrary reference zero-angle horizontal 
axis to the axis along the tip of one of the samara wings.  

The translational motion of the samara is simply along 
the vertical coordinate z. The downward force on the 
falling samara is its weight mg. While falling to ground a 
vertical force pushes upwards on the samara wings (Fig. 
3), it is the vertical component LV of the so-called 
aerodynamic lift vector force L [1-5]. This force L is 
simply the sum of the interaction forces of each wing with 
surrounding air as the samara falls to ground. 

Therefore the net vertical force component on the 
samara is then the difference mg – LV. A straightforward 
application of Newton Second Newton Law F = m a then 
gives 

 

 ݉݃ െ ௏ܮ ൌ ݉ቀௗ
మ௭

ௗ௧మ
ቁ.                         (1) 

 
where d2z/dt2 is the vertical acceleration of the samara. 

Let ρ be the air density, l the length of the samara 
wing, while β, ε, and α be the angles defined in the wing 
model depicted in Fig. 3. In the wing reference system, 

these angles are defined as follows: β is the angle of 
inclination of the flat “wing” with respect to the vertical, ε  
denotes the angle of total deviation of the air stream 
coming from below when interacting with the inclined 
wing of the falling samara. Finally, α  is the angle that the 
aerodynamic lift force L forms with the vertical direction 
(Fig. 3). It is known [1, 3] that the magnitude L of the 
aerodynamic lift force is proportional to the air density ρ, 
and to the cross-sectional area of the aerodynamic object 
given in our case by π(lsinβ)2. This lift is also proportional 
to the Sine of the deviation angle ε, and finally to the 
square v2(t) of the relative vertical speed of the wing with 
respect to the air. Therefore, the magnitude of the total 
vertical projection LV = L cos α of the aerodynamic lift L 
(Fig. 3) may be written as:  
 

ሻݐ௏ሺܮ ൌ  ሺ݈ sinߨߩ3 ሻଶߚ sinሺߝሻ cos ሺߙሻݒଶሺݐሻ.        (2) 
 
 

 
 

FIGURE 3. Physics model of the wing of a Triplaris samara. 
The wing is modelled as a flat slab ww´ inclined the angle β with 
respect to the vertical z-axis. L is the lift force that the air 
flowing from below, with velocity vair,in , applies to the wing. The 
deviation angle of the air flow is denoted ε. 
 
where the factor 3 in the r.h.s. of the equation comes from 
the presence of three wings in the samara. Note that the 
small change in the magnitude of the velocity of the air-
stream as it strikes the wing is also being neglected in our 
physics model. Only the change of direction of the air-
stream velocity vector v is considered (Fig. 3). After 
replacing the expression for the vertical component LV 
(equation (2)) into equation (1), and using the definition of 
the vertical speed v= dz/dt, one immediately obtains a 
differential equation that represents the motion of our 
model of samara along the vertical axis: 

                                                            
 

 ௗ
మ௭

ௗ௧మ
൅ ܣ ቀௗ௭

ௗ௧
ቁ
ଶ
ൌ  (3)                         .ܤ

 
Fortunately, explicit expressions for the constants A and B, 
can be simply obtained from equations (1) and (2) by 
simply dividing by the mass m. The constant coefficients 
in equation (3) then become (g is the local acceleration of 
gravity), 
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ܣ ൌ ଷగఘ ሺ௟ ୱ୧୬ሺఉሻሻమ௦௜௡ሺఌሻ௖௢௦ሺఈሻ
௠

,                (4) 
 

ܤ ൌ ݃.                                  (5) 
 
Ordinary differential equation (3) for the vertical motion is 
the first one of a pair of key differential equations of the 
present work. Note that Eq. 3 has the form of the well-
known Ricatti differential equation [7]. 

This differential equation can be easily solved in closed 
form in just a few steps, and in terms of well-known 
functions. In effect, let us define: 

 

ݒ ൌ ௗ௭
ௗ௧
    ֞     ௗ௩

ௗ௧
ൌ ௗమ௭

ௗ௧మ
 .                     (6) 

 
Then Eq. (3) for the vertical translation of the modelled 
samara becomes, 
 

ௗ௩
ௗ௧
ൌ ܤ െ ଶݒ ܣ   ฻      ௗ௩

ଵିቀಲಳቁ௩
మ
ൌ  (7)           .ݐ݀ܤ

 
With the following second change of variables, and its first 
derivative, 
 

      cosሺݓሻ ൌ ටܣ ൗܤ ݒ ฻ sinሺݓሻ ݓ݀ ൌ െටܣ ൗܤ (8)    ,ݒ݀

  
the initial differential Eq.(3)  takes a form which can be 
immediately integrated: 
 

ௗ௪
ୱ୧୬ሺ௪ሻ

ൌ െ√ݐ݀ܤܣ ฻ ݓ൫݊ܽݐൣ݈݊ 2ൗ ൯൧ ൌ െ√ݐܤܣ  ൅ ln   .ܥ
                                                                                 (9)  
 
Here C is a constant whose numerical value is to be found 
using the known initial conditions: t = 0 ⇔ v(0) = 0 ⇔  
cos w = 0 ⇔ w = π/2. Hence C = 1 and the exact solution 
of the translation motion differential Eq. (3) becomes: 

 
 exp ሺെ√ݐ ܤܣ ൌ tan൫ݓ 2ൗ ൯.                (10) 

 
To return to the initial variables one simply applies the 
well-known trigonometric relation 
 

ݓ൫݊ܽݐ  2ൗ ൯ ൌ േቀ√ଵିୡ୭ୱ௪
√ଵାୡ୭ୱ௪

ቁ.            (11) 
 
After a few additional algebraic steps one gets the time-
dependent function v(t), which represents the speed of 
descent of the samara:  
 

ሻݐሺݒ ൌ ට஻
஺
 ൯,              (12)ݐ  ܤܣ√൫݄݊ܽݐ

 
which can then be easily integrated in closed form to find 
the vertical displacement function z(t). The immediate 
integral formula to find z(t) can be found in any standard 
introductory calculus textbook, or in a handbook [8]. The 

two required initial conditions are of course the initial 
position z(0) = 0, and the initial speed v(0) = 0 of the 
samara for t=0. In summary the solutions to Eq. 3 are 
 

ሻݐሺݒ                 ൌ ට஻
஺
 ൯ ,                      (13a)ݐ  ܤܣ√൫݄݊ܽݐ

 
ሻݐሺݖ                 ൌ ଵ

஺
  ൯൧ .                    (13b)ݐ  ܤܣ√൫݄ݏ݋ܿൣ݈݊

 
These functions have been plotted in Fig. 4. From this 
figure we predict that a Triplaris samara descends to 
ground undergoing an early transient regime of variable 
acceleration that continuously evolves to a terminal or 
final uniform motion regime, in only few tenths of a 
second. This has been confirmed by our experiments (see 
Section V). 
 
 

 
 

FIGURE 4. Speed of descent (continuous line) and the vertical 
position of a modelled samara, as it descends to ground as 
predicted by the physics model. Note the non- linear transient 
regime at the start of descent, which lasts only about 0.3 s. Note 
that the predicted terminal speed is close to 1 m/s. 
 
 
The final uniform motion regime is clearly seen in Fig. 4, 
it corresponds to the horizontal portion of the plotted 
continuous line. This terminal speed of the samara can be 
accurately predicted, or explained, by equation (13a). In 
effect, the mathematical limit of the function tanh (t) as 
time t becomes large, is just 1 (as any calculus textbook 
shows). This leads to the following exact expression for 
the terminal speed of the modelled samara: 
 

௧ݒ ൌ ݈݅݉௧՜∞ݒሺݐሻ ൌ ඨܤ
൯ݐ ܤܣ√݄݊ܽݐ௧՜∞൫݈݉݅ ܣ ൌ 

             …ට஻
஺
 .1 ൌ ට஻

஺
                                         (14) 

 
The non-linear transient motion regime of the falling 
samara is also clearly represented in the curve for v(t) of 
Fig. 4: it may be seen that such regime starts at t = 0 and 
lasts only about 0.25 [s]. After that time the motion 
becomes uniform, and the speed the terminal speed. The 
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experimental measurements performed with real samaras 
have confirmed the validity of our theoretical model. In 
effect, in the laboratory one observes that a real samara 
when falling to ground first develops a transient regime of 
descent, which lasts only a few tenths of a second, and 
then reaches a terminal speed close to the predicted value 
ඥܤ ⁄ܣ   m/s (see Section V). 
 
 

 
 
FIGURE 5. Horizontal component LH (of the lift force L). As 
each wing is laterally tilted a small angle φ  the lift force L does 
not lie on the vertical plane defined by the z-axis and the 
nervature ee´ of the wing. The small force component LH 
produces the torque that forces the samara into rotation. 
 
 
 
IV. THEORETICAL STUDY OF THE ROTA-
TIONAL MOTION OF A TRIPLARIS SAMARA 
 
The relevant coordinate for the rotational motion of the 
samara is now the azimuth θ of the tip of a given wing 
(Fig. 2). Newton Second Law for rotational motion τ = I 
d2θ /dt2 can be applied to the rotation of the falling samara, 
where τ  is the external torque which forces the samara 
into rotation, I denotes the moment of inertia of the 
samara, and d2θ/dt2 the angular acceleration. Two 
opposing mechanical torques act on the samara and 
determine its rotation (see Fig. 2), namely, the rotational 
aerodynamic torque denoted τrot, and the drag torque τdrag, 
both of which are time-dependent, the first promotes the 
samara rotation, the second opposes it. Newton Second 
Law for the samara rotation can thus be written as, 
 

      ߬௥௢௧ െ ߬ௗ௥௔௚ ൌ ܫ ௗ
మణ
ௗ௧మ

                          (15) 
 
The rotation torque (τrot) originates from the interaction of 
the air with the wings as the samara descends.  Each wing 
shows, apart from its vertical inclination  β a small lateral 
inclination, or tilt, φ  (Fig. 5) which plays the role of angle 
of attack as it rotates, as in the case of a helicopter blade 

[3, 4, 5]. This lateral inclination means that the reaction 
force L departs a small tilt angle φ  from the vertical plane 
that bisects the wing (see Fig. 5). This departure means 
that a horizontal force component LH, of magnitude LH = 
La sin φ, acting on each wing, forces the samara into 
rotation. These are the horizontal forces that produce the 
aerodynamic torque τrot necessary for the rotation of the 
samara.  

Let us call b0 the mean value of the arm of the torque 
that the force component LH produces on the samara. This 
arm is measured from the vertical axis of rotation (Fig 5). 
The rotational torque, τrot on the samara is by definition 
(torque = force× arm): 
 

࢚࢕࢘࣎                  ൌ 3ሺ࢈૙ ൈ  ሻ                         (16)ࡴࡸ
 
where again the factor 3 comes from the existence of three 
wings in the samara and LH is orthogonal to b0 . 

Moreover the horizontal component LH of the lift force 
can be shown (see Appendix A) to be given by, 
 
ுܮ    ൌ ሻݐሺܮ sinሺ߶ሻ ൌ π ρ ሺ݈ ߚ݊݅ݏሻଶ sinሺߝሻ sinሺ߶ሻ   ,ሻଶݐሺݒ
                                                                                       (17) 

 
and τrot can then be found using Eq. (16): τrot=3b0 LH. 

It now only remains to find an expression for the 
second aerodynamic torque on the samara, which is the 
dragging torque τdrag. This second torque arises from the 
air drag on the upper surfaces of the wings as the samara 
rotates. After a simple integration of the drag force along 
the top of a single wing (see Appendix B) one find this 
drag torque to be given by Eq. (27): 

              
 

              ߬ௗ௥௔௚ ൌ ቂଷ
଼
 ሻ,             (18)ݐሻቃ߱ଶሺߚଷሺ݊݅ݏሺ݈ܽସሻߩௗܥ

 
where again a denotes the wing width, Cd is the 
dimensionless drag coefficient, and finally ω =dθ/dt is the 
rotational angular speed of the samara. 

Replacing expressions ((16) - (18)) into equation (15) 
and after division by the moment of inertia I, one gets the 
second key differential equation of our physical model, 
 

ௗమఏ
ௗ௧మ

ൌ ሻݐଶሺݒܧ െ ܦ ቀௗఏ
ௗ௧
ቁ
ଶ
,                  (19) 

 
where the constant D is just the drag torque τdrag given by 
Eq. (18) divided by the moment of inertia I, that is 
 

ܦ                    ൌ ଷ
଼ூ
 ሻ,                    (20)ߚଷሺ݊݅ݏሺ݈ସܽሻߩௗܥ

 
while the constant E, related to the aerodynamic torque τrot 
that favours the rotation, is found using Eqs. (16), (17), 
(19) and Appendix A, and is given by: 
 

ܧ              ൌ ଷగ
ூ
ሻଶܾ଴ߚ݊݅ݏሺ݈ߩ sinሺ߶ሻ sinሺߝሻ.             (21) 

 
Note that the first term in the right-hand side of the 
rotational motion differential equation (19) is quadratic on 
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the angular speed dθ/dt. It is a non-linear differential 
equation that cannot be integrated in closed form [7]. A 
different procedure, in fact a numerical integration, may be 
used to solve it. Constants values D and E are also 
required. Simple measurements on our field collected 
sample specimens of samaras gave the average values of 
required parametres to evaluate the two constants D and E 
in equations (20) and (21) (wing length l = 37 mm, wing 
width a =6 mm, inclination β =35° ). The density of humid 
air, at the local atmospheric pressure of 89311 Pa (i.e. 67 
cm Hg) and at a local temperature of 26° C, is 
approximately ρ = 1.05 kg/m3 [8]. The mean value of the 
torque arm b0 =12 mm, is determined from direct 
measurements on the collected sample of samaras. 

The value of the drag coefficient Cd for a samara wing 
proved to be a difficult constant to find. In principle it 
should be experimentally determined in a wind tunnel, a 
facility not available to us. As a reference, the drag 
coefficient for the wing of a locust insect is 0.1. A rough 
estimate of the samara surfaces drag constant Cd could be 
obtained in a straightforward way by applying the 
principle of Conservation of Energy to the samara motion, 
i.e. equating the initial gravitational energy of the samara 
to the sum of its kinetic energy, rotational kinetic energy, 
and using an estimate for the drag dissipated energy (the 
total kinetic energy of the air stream about the samara has 
also to be included). 

 
 

 
 
FIGURE 6. Predicted angular speed of a samara (its physics 
model) as a function of time. The terminal angular speed is close 
to 98.4 rad/s (about 16 R.P.S). Note the non-linear transient 
regime that lasts for about 0.85s.  
 
 
This rough calculation gave us the order of magnitude for 
the drag coefficient Cd ~10-1. A search of the literature 
gave us the required information [9] for the small angle of 
attack φ ≈ 2° of the samara and Cd≈ 0.2, the value used in 
this work. 

The moment of inertia I of the samara, which appears 
in equations (9), (14) and (15), remains to be determined. 
An exact value of this parameter is out of the question. Our 

model of samara consists of a small spherical bulb with 
three equally inclined flat plates emerging from its top 
(Fig. 1). Its moment of inertia can then be approximately 
obtained using tabulated expressions for the moment of 
inertia of a sphere and 3 equally inclined flat wings [10]. 
The result obtained is I ≈ 4.3× 10-9 kg m2. With the two 
constants D, E already known, it only remains to solve the 
motion equation (13) to explain how the Triplaris samara 
rotates. The variable speed v(t) function is required in (19); 
fortunately it was already obtained in our study of the 
vertical translation of the samara (see equation (13a)). 
When all the relevant constants of the samara were 
introduced into equation (21) the constant value E = 
3.862×102 m-2 was found. The constant D = 4.07×10 -2 was 
also found. 

The numerical algorithm of Runge and Kutta  [11] was 
used, with the known initial conditions ω(0) = 0  for t = 0, 
to solve the non-linear differential equation (19). The 
angular speed function ω(t) and the angular position θ(t) of 
the samara were then obtained. The angular speed function 
ω(t) predicted by the model is plotted in Fig. 6. Note that a 
terminal, or final, angular speed ωt ≈ 98.4 rad/s 
(equivalent to about 16 turns per second) is predicted for 
large values of time t. As can be noticed in Fig. 6 this 
terminal angular speed is reached about 0.85 s after the 
samara begins its fall to ground. We must also mention 
that there are readily available commercial software that 
can be used to solve numerically the two key differential 
equations of motion Eqs. (3) and (19), of the samara.  
 
 
 
V. EXPERIMENTS AND RESULTS 
 
Controlled experiments with a real samara in its natural 
environment are difficult to perform. Wind turbulences, 
the height (≈20 m) of the Triplaris canopy, and the 
ferocious ants that every Triplaris tree happens to host, 
forbid systematic studies in the field. Our initial, simple 
laboratory experiments (allowing a real samara to fall from 
rest) showed that, at least in quiet air, the path of the centre 
of mass of a given samara keeps sufficiently close to a 
vertical line, while it falls to ground. 

A set of preliminary kinematics experiment, using a 
chronometer and a vertical five-metre long tape were 
performed to measure the times for a falling and rotating 
samara to reach previously marked vertical positions.  The 
preliminary results, although not very accurate, gave hints 
that a small constant terminal vertical speed is soon 
achieved by the samara, and also hinted that an early 
transient regime of motion does exist. A second set of 
more accurate experiments were performed using 
ultrasonic ranging. This second technique is a very 
accurate way for localizing the samara as it falls vertically. 
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FIGURE 7. The plotted data points (dots) are the experimentally 
measured vertical positions of a real samara in its retarded fall to 
ground. The continuous curve is the predicted vertical 
displacement given by our physics model. Note the excellent 
agreement and the short non-linear transient regime (R2 is the 
correlation). 
 
We placed an ultrasound-ranging sensor on the floor, 
interfaced it to a personal computer, and different samaras 
were allowed to fall from 3-4 m above the sensor, and 
along the vertical through the sensor. The dotted line in 
Fig. 7 represents a typical experimental result for the 
vertical position of a real samara measured using this 
ultrasonic ranging technique, while the continuous curve is 
the vertical displacement function z(t) given by the 
theoretical model of samara, Eq. (13b).  
 

 
FIGURE 8. Optical beam shopping method used for the 
measurement of the terminal angular speed ω of a real samara. A 
He-Ne laser beam is set along a vertical and detected, after 
attenuation by a neutral density filter NDF, by a reverse-biased 
PIN photodiode. The rotating wings of the samara chop the beam 
and the photo signal generated is displayed and stored in a digital 
oscilloscope. 

Recall that the constant B (in Eqs. (13a) and (13b)) is 
simply the local gravitational acceleration (g = 9.78 m/s2 
in the outskirts of Caracas). Note the good agreement 
between the predictions of our theoretical model and the 
experimental data (Fig. 7). As predicted the terminal speed 
of a real samara is about 1 m/s, as given by the slope of the 
straight portion of the curve in Fig. 7. 

The terminal angular speed ω of the samara was 
measured using two procedures, firstly using an electronic 
stroboscope, and secondly using a method based on the 
shopping of a laser beam. The laser beam chopping 
method has greater accuracy and is far easier to apply (Fig. 
8) than the stroboscope method, it relies on the samara 
descending close to a vertical line.  

The results obtained with both methods are fortunately 
consistent and, what is better, the same. The optical beam 
chopping technique is very reliable and gives data that can 
be easily processed and therefore it is the one we present it 
here (see Fig. 8). A 2mW He-Ne laser beam is aligned 
vertically in the laboratory and a reverse-biased PIN 
photodiode is placed on the floor at the point where the 
laser beam strikes the floor. A neutral density filter (NDF) 
is used to attenuate the laser beam to avoid saturating the 
photodiode. As the samara falls to ground in close 
proximity to the vertical laser beam, its 3 wings shop the 
beam. The photodiode circuit then gives a periodic pulsed 
signal that is displayed (Fig. 9) and registered against time 
in a digital oscilloscope (Tektronik TDS-210 R.M.).  
 
 

 
                                   TIME (MS) 
 
FIGURE 9. Terminal angular speed of a real samara measured 
using our optical beam chopping method. The voltage signal 
generated by a photodiode is displayed, and stored, in a digital 
oscilloscope and the frequency of rotation of the samara (16.23 
Hz) is directly obtained using the two time cursors of the 
oscilloscope menu (here set at peaks 1 and 4). 
 
 
Fig. 9 shows a typical oscilloscope trace obtained with this 
optical chopping technique. Note that one can directly 
measure the time intervals between successive signal 
peaks (when the laser beam manages to pass towards the 
photo-detector, in between the rotating wings). The time 
intervals between such signal peaks are of course a third of 
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the samara period of rotation, and give directly the 
temporal frequency of rotation. From such oscilloscope 
traces the measured mean terminal angular speed, for a 
sample of 15 samaras, was obtained ωt = 100.2 ± 1.4 
rad/s, a value that confirms the validity of our theoretical 
model. In effect our model, for the real samara used in that 
experiment, predicts a value ωt ≈ 98.4 Hz, very close 
enough to the measured one (only about 2 % error). In 
passing, note the excellent quality of the experimental 
results given by the optical chopping technique.  
 
 
VI. DISCUSSION AND CONCLUSIONS 
 
Triplaris samaras perform a motion that apparently can be 
described as a simple superposition of independent 
rotation and translation. Instead, we found in this work that 
the rotation is induced by an aerodynamic torque forced on 
the laterally inclined wings by interaction with the 
surrounding air, as the samara travels to ground. The small 
lateral inclination, or tilt φ (Fig. 5), produces small 
horizontal forces (horizontal components of the lift force L 
on the wings) that generate the rotational torque. 

This cross-coupling between the vertical translation 
and the rotation is the key to the dispersal strategy of the 
samara: it induces the final long-lasting terminal regime, 
which then favours the horizontal transport, i.e. the 
dispersal of the samara by transverse winds. 

We found that the samara vertical translational motion 
is separated into two different regimes, a short non-linear 
initial transient, and a final uniform terminal regime. The 
terminal vertical speed has been experimentally measured, 
with good accuracy and precision. Starting with a set of 
basic assumptions, and with the application of well-known 
elementary physics, a theoretical model has been 
established. This model is capable of predicting the non-
linear motion as well as the terminal regime of the samara. 

A samara finally reaches ground with a mean speed 
close to 1 m/s, the actual value depending upon its physical 
parameters (mass, wing inclination, and the like). The 
model also predicts a terminal angular speed ωt close to 
98.5 rad/s. A special experimental method (the optical 
beam chopping) was developed by us to measure 
accurately the terminal angular rotation speed of the 
samaras. The experiments with a sample of samaras gave a 
mean angular speed <ωt> =100.1 Hz, close enough to our 
theoretical prediction (only about 1.6% error). 

In Fig. 7 small “oscillating” departures, similar to the 
librations of an axis-symmetric conical spacecraft [12], are 
observed with respect to the theoretical curve. They are to 
be explained by the small wobbling of a real samara as it 
falls to ground. Recall we made the assumption that the 
samara falls to ground with its symmetry axis exactly 
along a vertical, while a real samara axis can wobble a bit, 
as spacecrafts do. A refined model must account for these 
small librations of the samara axis as it falls. Finally, 
during the present work we discovered an unexpected 
dimorphism attribute, or symmetry-breaking, of the 
Triplaris samaras: some samaras behave as right-hand 
airscrews, and develop upward spin (i.e. angular velocity 

oriented upward), others are left-hand airscrews and 
develop downward spin. The spin orientations of samaras, 
and the role if any, that small asymmetries of the samaras 
(in wing size, angular separation, different wing tilts and 
the like) have in the dispersal flight, deserve further 
investigation. 

 

 
 
FIGURE 10. (a) Tangential speed u(r) of a small element dl of 
wing that rotates with respect the vertical z – axis. The radial 
distance is r and β is the inclination angle of the wing. (b) dl and 
dr are related by dr =dl sin β. 
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APPENDIX 
 
A. EVALUATION OF THE AERODYNAMIC TOR-
QUE OF ROTATION 
 
The aerodynamic torque of rotation on the samara 
originates from the aerodynamic lift force L on its wings. 
As explained in Section 2 the wing of a samara shows a 
small lateral tilt φ (Fig. 5). Therefore the wing plane forms 
an angle (90+φ )° with respect to a vertical plane drawn 
through the wing central nervature (Fig. 1). Because of 
this tilt the force vector L crosses (do not intersect) the 
vertical rotation axis of the samara, and therefore there 
exists a horizontal component LH (Fig. 5) that crosses the 
vertical axis orthogonally. The magnitude of this force 
component is of course (Fig. 5) given by LH = L sin φ. It is 
well-known [3, 11] that the magnitude L of the 
aerodynamic lift force on a wing is proportional to the air 
density ρ, to the square of the relative speed v with respect 
to air, and to the wing cross-section. Therefore in the 
present case L may be written as:  
 

ܮ    ൌ  ሻ.            (22)ݐଶሺݒ ሻߝሺ݊݅ݏ ሻ൯ଶߚሺ݊݅ݏ ൫݈ ߩ ߨ 3
 
The component LH = L sin φ can then be found and so the 
product b0LH (see Fig. 5) finally gives the desired 
rotational torque Eq. (16), on the wings.  
 
 

B. EVALUATION OF THE DRAG TORQUE 
 
The drag between the air and the surfaces of the rotating 
wings produces the drag torque. This force is proportional 
[3, 4] to the air density ρ, to the area of the surface over 
which the air flows, and to the square u2 of the relative 
air/surface speed, the proportionality constant being the 
drag coefficient Cd. Recall that l is the length of the 
assumed flat wing in our model, and a is its width in Fig. 
(10a). Consider the differential element of wing dl 
(Fig.10a) whose radial distance to the axis of rotation is r. 
The infinitesimal torque of the wing differential element of 
area adl is then 
 
                  ݀߬ௗ௥௔௚ ൌ ݎ ቂ஼೏

ଶ
ቃ  ሻ.                      (23)ݎଶሺݑሺ݈ܽ݀ሻߩ

 
The tangential speed of this wing differential element is 
simply u(r) = ω r, where ω is the angular speed of the 
samara. The length differential element dl is (Fig. 10b) 
 

                                    ݈݀ ൌ ௗ௥
ୱ୧୬ ሺఉሻ

.                             (24) 

 
Replacing this equation in the previous one, the following 
expression of the differential drag torque ensues, 
 
                  ݀߬ௗ௥௔௚ሺݐሻ ൌ

ଷ஼೏
ଶ ୱ୧୬ሺఉሻ

 (25)             .ݎଷ݀ݎሻݐଶሺ߱ܽߩ
 
The total drag torque on the three wings of our model of 
samara is obtained by integrating along the whole wing, 
that is integrating between the limits 0 and l sin β: 
 

߬ௗሺݐሻ ൌ
ଷ
ଶ

஼೏
ୱ୧୬ሺఉሻ

׬ ሻݐଶሺ߱ܽߩ ௟ ୱ୧୬ ሺఉሻ.ݎଷ݀ݎ
଴       (26) 

 
The integral in the right hand side is immediate and the 
result gives Eq. (18) above, 
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