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Abstract 
Taylor expansions of the exponential exp(x), natural logarithm ln(1+x), and binomial series (1+x)n are derived to low 
order without using calculus. It is particularly simple to develop and graph the expansions to linear power in x. An 
example is presented of the application of the first-order binomial expansion to finding the electrostatic potential at 
large distances from an electric dipole. With a little extra work, the second-order expansions can be obtained starting 
from the familiar kinematics expression for the motion of a particle accelerating in one dimension, which instructively 
ties the mathematical development to physics concepts already presented in introductory courses. 
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Resumen 
Taylor expansions of the exponential exp(x), natural logarithm ln(1+x), and binomial series (1+x)n are derived to low 
order without using calculus. It is particularly simple to develop and graph the expansions to linear power in x. An 
example is presented of the application of the first-order binomial expansion to finding the electrostatic potential at 
large distances from an electric dipole. With a little extra work, the second-order expansions can be obtained starting 
from the familiar kinematics expression for the motion of a particle accelerating in one dimension, which instructively 
ties the mathematical development to physics concepts already presented in introductory courses. 
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I. INTRODUCTION 
 
Approximating a binomial series by the sum of its first few 
terms is useful throughout an introductory physics course. 
Example applications [1, 2] include estimating square roots 
and derivatives, properties of circular orbits, variation of the 
speed of sound with temperature and of the period of a 
pendulum with changes in g, and the classical limits of such 
relativistic quantities as kinetic energy. Another important 
example, presented later in this paper, is approximating the 
electrostatic potential at large distances from a charge 
configuration such as a dipole. However, in algebra-based 
courses, the formula for the series expansion is usually 
pulled out of thin air. The primary goal of this article is to 
develop derivations of the binomial series that are simple 
enough to be presented in such courses. Even in a calculus-
based course, where students in principle should know 
enough math to follow Taylor’s theorem and its use in 
formally deriving the binomial series, a more intuitive and 
physics-based approach would greatly increase student 
understanding of and facility with the series. 

A simple way to derive the binomial series to a given 
order is to use expansions of the exponential and logarithm 
functions to the same order. These latter two functions 
appear so frequently in the introductory curriculum (for 
instance, in RC and LR circuits, in thermodynamic 
calculations of work and heat, in radioactive decay, and in 
simple models of drag) that it is worth the small extra time 
spent initially discussing the properties and expansions of 
these two functions before tackling the binomial series. 
Furthermore, not only is the binomial series less familiar to 
most students than the exponential and logarithm functions, 
it has the added complexity of depending on two 
independent variables (n and x, here taken to range over the 
real numbers) rather than only on x. 

Often it suffices for a given application to approximate 
the binomial series (1 )nx+  to first order, i.e., by the sum 
1 nx+  of its constant and linear terms only. In this case, the 
derivations are so simple that it is instructive to start with 
them. Rarely (if ever) is it necessary in introductory physics 
to go beyond second order (in which a quadratic term in x is 
added to the series expansions). To obtain the second-order 
expansion, a different approach, motivated by the familiar 
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kinematics expression for the position of an accelerating 
particle as a function of time, can be used to derive the 
results by directly connecting the math with the physics they 
are concurrently learning. 
 
 
II. FIRST-ORDER TAYLOR EXPANSIONS 
 
A. The Exponential Function 
 
Consider the function ( ) xy x e= . It is defined by two 
properties. First, it must pass1 through the point (0,1) . 
Secondly, the slope of its graph at those coordinates must 
equal its y-value at that point, namely 1. Consequently a plot 
of the exponential function to first order is a line with slope 

1m =  and y-intercept 1b = , so that 
 

 1xy b mx e x= + ⇒ ≈ + ,                (1) 
 
is the first-order approximation of an exponential, valid for 
values of x near zero, i.e., for 1x << . 
 
B. The Natural Logarithm 
 
The function ln( )x  is undefined at the origin and 
consequently we cannot expand it in a Maclaurin series 
about that point. The simplest alternative is to shift the 
argument by a unit step and instead develop the expansion of 

( ) ln(1 )y x x= + . Noting that the logarithm is the inverse of 
the exponential function, we can take the log of both sides of 
Eq. (1) written as 1 xx e+ ≈  to immediately get 
 

 ln(1 )x x+ ≈ ,                           (2) 
 
the expansion of logarithm to first order, which again holds 
for values of x such that 1x << . Graphically, Eqs. (1) and 
(2) can be interpreted as the best linear fits to an exponential 
and a logarithm near 0x = , as graphed in Fig. 1. 
 
 
C. The Binomial Series 
 
As a preliminary step, replace x by nx in Eq. (1) to obtain 
 

 1nxe nx≈ + ,                            (3) 
 
which is valid provided 1nx << . It is now straightforward 
to obtain the binomial expansion to first order as follows, 
 

 ln(1 )(1 )n n x nxx e e++ = ≈ ,                     (4) 
 

                                                 
1The general solution of the differential equation /dy dx y=  is 

( ) xy x Ae=  which passes through the point (0, )A  where A can be any real 
value. 

using Eq. (2) in the second step. Now substitute Eq. (3) to 
get the final result, 

FIGURE 1. The function xy e=  (thin red curve) can be 
approximated by 1 x+  (red line segment) for 1x << , while 

ln(1 )y x= +  plotted by the thin blue curve can be approximated 
by x (blue line segment) near the origin. 

 
 (1 ) 1nx nx+ ≈ + .                          (5) 

 
As a quick demonstration to convince students of its validity 
and power, use this result to calculate 

1.21 1 0.21/ 2 1.105≈ + = , in good agreement with the 
exact value of 1.100. 

Note that Eq. (5) is only valid provided that both 1x <<  
and 1nx << . Many textbooks and instructors omit to 
mention the second limiting condition! As a counter-
example when the first but not the second limit holds, try 

0.1x =  and 100n = . On the other hand, try 20x =  and 
0.01n =  for a counter-example when only the second limit 

holds. Both conditions are therefore individually necessary. 
The curious instructor can understand this conclusion by 
examining the second-order term in the binomial expansion, 
derived in Eq. (15) below, which is the sum of 2 2 / 2n x  and 

2 / 2nx− . If these expressions are each to be negligible 
compared to the first-order term nx, then we require that 
 

 
2 2 2

1 and 1
n x nx

nx nx
<< << ,               (6) 

 
which reduce to the preceding two limiting conditions 

1nx <<  and 1x << . It is left as an exercise to the reader to 
show that these two conditions guarantee that the third and 
higher order terms in the binomial expansion are also 
negligible. 
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III. SECOND-ORDER TAYLOR EXPANSIONS 
 
A. The Exponential Function 
 
Instead of writing the independent variable as x, we will now 
write it as t and discuss the expansion of ( ) ty t e= . Thinking 
of y as the position of a particle moving in one dimension 
during a time interval t, we can invoke the standard 
kinematics expression2 
 

 0 0 0
21

2y y t a tυ= + + ,                      (7) 
 
where 0y , 0υ , and 0a  are the position, velocity, and 
acceleration of the particle at 0t = . Here 0a  has been 
written in place of the more familiar form a because the 
acceleration is not constant for a particle whose position 
varies exponentially with time. Therefore Eq. (7) is only 
valid for small times, that is for 1t << . 

Evaluating ( ) ty t e=  at 0t =  gives 
 

 0
0 1y e= = ,                          (8a) 

 
in accord with the first property of the exponential function 
discussed in Sec. II.A above. A more complete statement [3] 
of the second property of an exponential is that the slope of 
the function is equal to the value of the function y at any 
value of the independent variable t. (This property is 
expressed as a differential equation for independent variable 
x in Footnote 1.) Since the slope of a graph of the position 
versus time is the velocity, it follows that ( ) ( ) tt y t eυ = =  
and therefore 
 

 0 1υ = . (8b) 
 
Similarly, the slope of the velocity defines the acceleration, 
so that ( ) ta t e=  also, and thus 
 

 0 1a = . (8c) 
 
Substituting Eqs. (8a) to (8c) into (7) along with ( ) ty t e=  
finally gives 
 

 21
21te t t= + + ,                          (9) 

 
which is an expansion of the exponential function up to the 
second power of its argument t. As expected from Fig. 1, the 
coefficient of the second-order term is positive because the 
plot of the exponential rises above the red first-order line 
segment at both of its ends. 
 
 
 

                                                 
2Implicitly, both y and t are assumed to be dimensionless by having 
normalized them to some characteristic length and time scales. 

B. The Natural Logarithm 
 
Ignoring a term of order 3t , Eq. (9) can be rewritten as 
 

 ( )( )21
21 1te t t= + + . (10) 

 
Taking the logarithm of both sides gives 
 

 ( ) ( ) ( )2 21 1
2 2ln 1 ln 1 ln 1t t t t t= + + + ≈ + + ,       (11) 

 
using Eq. (2) to expand the second logarithm to first order in 

2t , so that Eq. (11) is valid up to the second power of t. It 
rearranges into 
 

 21
2ln(1 )t t t+ ≈ − ,                    (12) 

 
which is the desired second-order expansion of the 
logarithm, valid for 1t << . This time the coefficient of the 
second-order term is negative, in accord with the fact that the 
graph of the logarithm in Fig. 1 falls below its first-order 
linear approximation (represented by the blue line segment) 
as one moves away from the origin in either direction. 
 
 
C. The Binomial Series 
 
Proceeding in analogy to Sec. II.C above, write 
 

 ( )21
2ln(1 )(1 )

n x xn n xx e e
−++ = ≈ ,                (13) 

 
using Eq. (12) in the second step with x written in place of t. 
Then equate the right-hand sides of Eqs. (9) and (13) with 
the argument of the final exponential in Eq. (13) replacing t 
in Eq. (9) to get 
 

 ( ) ( )22 2 21 1 1
2 2 2(1 ) 1nx n x x n x x+ ≈ + − + − . (14) 

 
Finally expand the last square and discard all terms with 
powers of x larger than 2 to obtain 
 

( 1) 2
2(1 ) 1 n nnx nx x−+ ≈ + + .               (15) 

 
 
IV. EXAMPLE OF A FIRST-ORDER BINOMIAL 
EXPANSION IN ELECTROSTATICS 
 
Given point charges ±Q separated by distance a in Fig. 2, 
find the electrostatic potential V at the starred location 
assuming y a>> . 

Denoting the Coulomb constant as k, the potential (with 
the reference at infinity as usual) is the sum of that due to 
each point charge alone, 
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1/ 22

22 2

2 2

2 3

1 1 ,

11 1 ,
2 2

kQ kQ kQ aV
y y yy a

kQ a kQa
y y y

−⎡ ⎤⎛ ⎞⎢ ⎥= − = − +⎜ ⎟⎜ ⎟⎢ ⎥+ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
≈ − − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (16) 

FIGURE 2. The electrostatic potential is to be found at the starred 
position located far along a perpendicular drawn from the positive 
end of an electric dipole. 
 
to lowest nonzero order, using Eq. (5). Notice that the first-
order term in the binomial expansion is required to obtain 
this result. In contrast, if one calculates the potential at some 
large distance x to the right of the positive charge, the answer 
is 2/ ( ) /V kQa x x a kQa x= + ≈  which can be obtained by 

simply dropping a compared to x in the parentheses, 
equivalent to retaining only the trivial zeroth-order term 
(1 ) 1nz+ ≈  in a binomial expansion. 

The final boxed answer in Eq. (16) for the potential does 
not fall off from the electric dipole with the inverse distance 
squared as y → ∞ . The general formula [4] for V in the far 
field is 2cos /kQa rθ  where r is the position of the field 
point relative to the center of the dipole (as indicated in Fig. 
2) and θ is the angle between vector r and the dipole moment 
(which points horizontally to the right in the present case). 
We see from Fig. 2 that cos / 2a rθ =  so that V falls off as 
the inverse distance cubed. The angle θ approaches 90˚ as 
y → ∞  so that cosθ  approaches zero and V falls to zero 

faster than it would if θ were constant. The potential for a 
dipole only falls off with the inverse distance squared if one 
recedes along a purely radial path away from the midpoint 
between the centers of positive and negative charge. That 
happens for example for the case of large x discussed above 
(corresponding to 0θ = ). 
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