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Abstract 
The resonance of the Wilberforce pendulum is defined as the state of the maximum period of beats. The plausible 
assertion that resonance is characterized by the equal values of both the frequencies of longitudinal and torsion 
vibrations is proven. Although a coupling constant between longitudinal and torsion vibrations determines the 
frequencies of normal modes it plays no role in the definition of the resonance state. 
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Resumen 
La resonancia del péndulo de Wilberforce se define como el estado de la duración máxima de ritmos. La afirmación 
plausible de que la resonancia se caracteriza por los valores iguales tanto de las frecuencias longitudinales como de las 
vibraciones de torsión se demuestra. Aunque una constante de acoplamiento entre las vibraciones longitudinales y las 
de torsión determina las frecuencias de los modos normales, no desempeña ningún papel en la definición del estado de 
resonancia. 
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In 1895 Wilberforce invented a pendulum [1] that shows a 
transfer of energy from the longitudinal to the torsion 
oscillations of a mass attached to a long helical spring. This 
effect has attracted the attention of many authors [2, 3, 4, 5, 
6]. The common feature of the approaches of these authors is 
the assumption that the Wilberforce pendulum is in a state of 
resonance when the frequencies of the uncoupled oscillations 
are equal. However these oscillations are coupled and normal 
frequencies are functions of the coupling constant.  

In this paper we put the question of resonance on firm 
ground by stating that the state of resonance of the 
Wilberforce pendulum is the state of the maximum period of 
beats. In this way one can experimentally check the 
resonance state of the Wilberforce pendulum. 

The standard model of the Wilberforce pendulum [2, 3, 
4, 5, 6] assumes a cylindrical and symmetric body of mass 
suspended on a massless helical spring. Due to the constant 
length of the spring wire the longitudinal extension or 
compression of the spring induces small changes in the 
radius of the spring. These changes induce the torsion of the 
spring around its axis. This effect is schematically shown in 
Fig. 1. We assign the coordinates z and φ to the longitudinal 
and torsion deformation of the spring (see Fig. 1). The origin 
of the coordinate system is the equilibrium position of the 
body. Then the body weight G plays no role in the dynamics 
of the system. 

The corresponding Lagrangian function [4] is 
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FIGURE 1. The helical spring of the unstretched length I0 and 
corresponding coordinates. G is the body weight, IG and φG are, 
respectively, the extension and torsion angle of the spring due to the 
weight of the suspended body. Origin 0 of the x, y, z coordinate 
system is related to the equilibrium of the system. 
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We measure the torsion angle from the equilibrium position. 
Then 
 

                                 ( ) ,z Czϕ =                                    (2) 
 
describes the torsion of the spring due to the longitudinal 
displacement z. The body mass is m, I is its moment of 
inertia, k is the static spring longitudinal constant and D is 
the torsion constant. Putting k’ = k + DC2, Eq. (1) becomes  
 

2 2 2 21 1 1 1 .
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L mz I k z DC z Dϕ ϕ ϕ′= + − + −       (3) 

 
The equations of motions are 
 

                              ,mz k z DCϕ′= − +                            (4) 
 

                              .I DCz Dϕ ϕ= −                               (5) 
 
Assuming the solution in the form of 
 

                            ,i tz Ae ω θ+=                                  (6) 
 

                            i tBe ω θϕ +=                                    (7) 
 
we get a system of two homogenous linear equations for A 
and B, 
 

                        2( ) 0,m k A DCBω ′− + =                       (8a) 
 

2( ) 0.DCA I D Bω+ − =                       (8b) 
 
This system has a nontrivial solution if the determinant of 
the system vanishes, i.e. if 
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The zeroes of the corresponding biquadrate equation 
 

            4 2( ) 0mI k I mD kDω ω′− + + = ,                 (10) 
 
determine the frequencies of the normal modes, 
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When the coupling between the longitudinal and torsion 
motion is absent (C=0), these frequencies are equal to the 
frequencies of the uncoupled longitudinal and torsion 
modes

1

2
0 /k mω = ,
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2
0 /D Iω = , respectively. 

The general solutions for the coordinates are 
 

               1 1 2 2
1 2

i t i tz Ae A eω θ ω θ+ += + ,                     (12) 
 

              1 1 2 2
1 2

i t i tB e B eω θ ω θϕ + += + .                     (13) 
 
The constants Ai and Bi are coupled by Eqs. (8). We need 
four conditions, in addition to Eqs. (8), to find out the time 
dependences of the coordinates. These are the initial 
conditions for the generalized coordinates and corresponding 
velocities. Choosing z(0) = A and φ(0) = ϕ (0)= z (0)  = 0 
the time dependence of coordinates read, 
 

    1 2 1 2cos cos ,
2 2

z A t tω ω ω ω+ −⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

            (14) 
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FIGURE 2. The coordinates of Wilberforce pendulum as functions 
of time.  
 
The solutions are shown in Fig. 2. The frequency of beats is 
equal to fb = (ω1 – ω2)/2π.  

Turning disk-like screw nuts (see Fig. 1) down the bolt 
we change the moment of inertia of the body and 
subsequently the frequencies of the uncoupled torsion 
vibration and beats, respectively. Experimentally measurable 
quantities are the normal frequencies or their algebraic sums, 
ω1 – ω2 and the frequency of beats fb(I). As we stated at the 
beginning of this paper we have chosen the latter to define 
the resonance of the Wilberforce pendulum. During 
experimentation the moment of inertia was changed until the 
largest possible period of beats is reached. 

For the sake of simplicity we are looking for the 
minimum of (ω1 – ω2)2 rather than of ω1 – ω2. Both 
functions achieve their minima for the same value of the 
moment of inertia.  

Using Eq. (11) after lengthy but otherwise 
straightforward calculations we get 
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The first derivation of this function 
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vanishes for 
 

               
1 20 0 .k D or

m I
ω ω= =                            (18) 

 
Resonance occurs if the frequencies of uncoupled vibrations 
are equal. An interesting description of the Wilberforce 
pendulum based on continuum mechanics is provided by 
Köpf [5]. He has shown that the resonance state of the 
Wilberforce pendulum does not depend on length or 
diameter of the wire nor on the pitch or number of turns of 
the spring. Here we have shown another peculiarity of this 
pendulum. The coupling constant between longitudinal and 
torsion vibrations does not enter into a condition for 
resonance although the resonance condition is defined in 

terms of the period of beats, which in turn is a function of the 
coupling constant. 
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