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Abstract 
The dynamics of a system subjected to a potential equal to the sum of the Henon-Heiles potential and that of the 

hydrogen atom in a uniform magnetic field has been studied. Depending on the energy of the system, the Poincare 

surface is characterised by regions of regular motion, appearing and disappearing regions of regular motion, regions of 

recurrent (regular and chaotic) trajectories and those of non-recurrent trajectories.  
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Resumen 
Se ha estudiado la dinámica de un sistema sometido a un potencial igual a la suma del potencial Henon Heiles-y el del 

átomo de hidrógeno en un campo magnético uniforme. Dependiendo de la energía del sistema, la superficie de 

Poincaré se caracteriza por regiones de movimiento regular, apareciendo y desapareciendo regiones de movimiento 

regular, trayectorias de regiones recurrentes (regulares y caóticas) y de las trayectorias no periódicas. 
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I. INTRODUCTION 

 
The Henon-Heiles potential has played a prominent role in 

the development of the chaos theory. Suggested by Henon 

and Heiles [1] as the simplest potential that would produce 

all the complexities obtainable in any chaotic system, the 

potential has received a lot of attention from researchers, and 

has recently [2] been referred to as the most famous open 

Hamiltonian system.  

 The Henon-Heiles potential is given as 
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Where qi is the coordinate of the i th oscillator, with a 

corresponding momentum pi; i 1, 2. 

 The modified form  
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describing the motion of free test particles in vacuum 

gravitational pp-wave space-time has been studied by Vesely 

and Podolsky [3]. This is just different from the modified 

Henon-Heiles system studied by Choudhury and Kalita [4]: 
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In addition, Brack, et al. [5] carried out an investigation of 

the modified Henon-Heiles potential, 
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where  is a coupling parameter. 

The quartic Henon-Heiles potential has been 

investigated by Brack, et al. [5, 6]. The same problem was 

treated by Brack [7] in scaled coordinates as  
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The hydrogen atom has received a lot attention from 

researchers, ranging from the classical electronic motion of 

the atom near a metal surface [8], hydrogen atom in the 

presence of uniform magnetic and quadrupolar electric 

fields [9] to the hydrogen atom in parallel electric and 

magnetic fields [10]. 
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We consider the hydrogen atom in a uniform magnetic 

field (of strength B ) described by the Hamiltonian [11]: 
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where z is the direction of the field, me is the reduced mass 

of the electron and the nucleus, and ω is half the cyclotron 

frequency, equal to 
2 e

eB

m c
. It has been shown that the 

dynamics is equivalent to that given by the Hamiltonian 

[11]: 
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where the scaled energy, 

0

B
s

B
, determines the 

degree of chaoticity of the system and 
3 3

0 /eB m e c h , the 

value of the magnetic field strength at which the oscillator 

energy equals the Rydberg energy, . q1, p1, q2 and p2 are 

the coordinates and momenta of the equivalent system. The 

last term in Eq. (7) is the diamagnetic coupling term. 

The system described by Eq. (7) has been studied 

extensively and found to be fully chaotic for 0.1s  [11]. 

 
 

II. METHODOLOGY 
 

In this work, the potentials of the two systems discussed 

above are coupled, that is,  
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to obtain  
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where the diamagnetic coupling term has a factor of 
5

2
, 

and not 
1

8
.  

With the potential, the Hamiltonian governing the motion 

of the oscillators is given as, 
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The resulting equations of motion are given by 

 

, i = 1,2, (9)i
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, i = 1,2. (10)i
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The equations to be solved, therefore, are: 
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With the energy, E, ranging from 0.51 to 1.1, the Poincare 

surface has been investigated with a view to determining 

the area of the phase space covered by invariant curves.  

The equations were solved using the Runge-Kutta 

fourth order method, and the Poincare surface of section 

determined by 01q , 01p . This reduced the phase 

space to a two dimensional subspace, the Poincare surface 

of section. The trajectory can intersect the Poincare surface 

either way, but by requiring that 01p , intersections in 

only one direction are studied. 
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III. RESULTS AND DISCUSSION 

 

Figures 1 and 2 show the Poincare surface of section of the 

system under consideration. In Fig. 1a, the gaps between 

the three major regions, the horizontally opposite (regular) 

regions, and the central region consists of non-recurrent 

trajectories. The central region encloses elliptic orbits. An 

initial point in the gaps leaves the Poincare surface after 

just a few intersections. This behaviour continues until 

energy equals 0.55 (Fig. 1b), where it is evident that the 

elliptic region around (0, 2) is about to break away from the 

rest of this particular region. In addition, the central region 

itself is now clearly not an island. The detachment is 

complete when the energy is 0.56 (Fig. 1c). In Fig. 1d, the 

portion that separated from the main central region 

becomes more chaotic when the energy increases to 0.58. 

However, there is yet a transition, of the breakaway central 

region, to a less chaotic situation between 0.58 and 0.6, as 

is evident from Fig. 1e. Increasing the energy to 0.62 

ensures that the whole of the central region becomes more 

chaotic, including the breakaway part, which still retains an 

elliptic region (Fig. 1f). Moreover, the inner part of the 

main central region breaks into three regions of regular 

motion. In addition, the horizontally opposite regular 

regions have become chaotic. These two regions have 

become non-recurrent by energy 0.65, as only the three 

regular regions within the main central region, as well as 

the diminished regular region in the breakaway region 

remains (Fig. 1g). The latter regular region diminishes 

further through the value of energy 0.68 (Fig. 1h), after 

which it joins the non-recurrent region. As the energy 

increases to 0.74, the upper and lower regions of the central 

region become more chaotic, leaving the smaller regular 

regions (Fig. 2a). These chaotic regions increase at the 

expense of the regular regions until energy 0.8 (Fig. 2b). 

Yet again, there is a transition to a less chaotic situation in 

these opposite regions as evident in Fig. 2c, when the 

energy is 0.84. At this energy, the central regular region 

has the boundary encroaching on it. Increasing the energy 

further results in Fig. 2d (energy 0.88), where the regular 

region in the centre of the figure has been narrowed down 

considerably by the surrounding chaotic sea. However, the 

central region remains through energy 0.92 (Fig. 2e) to 

energy 1.0 (Fig. 2f), as well as the oppositely located 

regular regions, which are now even much smaller. By 

energy 1.05 (Fig. 2g), the central regular region has 

disintegrated. Indeed, the points shown in the centre of the 

figure are non-recurrent. By 1.1 (Fig. 2h), no recurrent 

trajectory exists. The points shown in Fig. 1.1 are indeed 

what is left of the two horizontally opposite regular 

regions, and the points shown are a part of non-recurrent 

trajectories. 

 

 

IV. CONCLUSION 
 

An investigation of the sum of the potentials due to Henon-

Heile and that of the hydrogen atom in an uniform 

magnetic field between the energies 0.51 and 1.1 gives rise 

to regular, chaotic, recurrent and non-recurrent behaviour, 

depending on the energy, with more than one of these 

phenomena present at all values of the energy. Even at the 

lowest limit of the energy range considered, parts of the 

Poincare surface consist of non-recurrent trajectories. As 

the energy increases, the elliptic regions, elliptic regions 

break up into chaotic regions, which in turn become 

regions of non-recurrence. It is also noted that some 

regions make a transition from regular to chaotic and then 

become less chaotic, with regular regions appearing within 

them. At the higher energies, all the regular regions and the 

chaotic ones become non-recurrent, so that beyond a 

certain energy (equal to 1.1), the entire Poincare surface is 

devoid of recurrent orbits. 
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      (a) E = 0.51                              (b) E = 0.55 

 

 

 

 

 

 

 

 

 
 

      (c) E = 0.56                               (d) E = 0.58 

 

 
 

 

 

 

 

 

 

 

  
           (e) E = 0.6                              (f) E = 0.62 

 

 
 

 

 

 

 

 

 

 
        (g) E = 0.65                  (h) E = 0.68 

 
FIGURE 1. Poincare surface of section for values of energy 0.51 to 0.68 
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           (a) E = 0.74                                            (b) E = 0.8 

 

 

 

 

 

 

 

 

 
 

           (c) E = 0.84                  (d) E = 0.88 

 
 

 

 

 

 

 

 

 
 

           (e) E = 0.92                                (f) E = 1.0 

 
 

 

 

 

 

 

 

 

   
          (g) E = 1.05                          (h) E = 1.1 

 
FIGURE 2. Poincare surface of section for values of energy 0.74 to 1.1 
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