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Abstract 
The photosynthetic solar constant is revised by considering experimental determinations of the wavelength-

dependence of photosynthetic quantum efficiency and absorbance. Using the efficiency of the light-independent 

metabolic phase of photosynthesis, a new estimate of 17.5 W m-2 is obtained for the photosynthetic solar constant. 
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Resumen 
La constante solar fotosintética es revisada considerando las determinaciones experimentales de la dependencia de la 

longitud de onda de la eficiencia y la absorbencia cuántica fotosintética. Usando la eficiencia de la fase metabólica de 

la de luz-independiente de la fotosíntesis, se obtiene una nueva estimación de 17,5 W m-2 para la constante solar 

fotosintética. 
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I. INTRODUCTION 
 

A series of interesting papers concerning photosynthetic 

energy transduction and CO2 assimilation has appeared 

recently in this journal [1, 2, 3]. These have prompted me to 

consider the significance of the wavelength-dependence of 

photosynthetic efficiency in this context. In case they might 

be useful anyone contemplating using the photosynthetic 

solar constant [3] and the underlying analysis in their 

teaching I briefly outline my conclusions here. 

 

 

II. SOME OBSERVATIONS 
 

Photosynthetic efficiency () can be thought of as being the 

product of several component efficiencies corresponding to 

the phases of the process [4]. Combining some of these,  

can be written as the product of the quantum efficiency (q), 

which is the CO2 assimilated per photon absorbed, and the 

metabolic efficiency (m), which is the proportion of the 

CO2 incorporated into biomass. The former depends on the 

wavelength of light () [5, 6] whereas the latter does not. 

Consequently the absorbance factor (()) used in 

calculating the input solar energy (QP) should be replaced 

with q()(), and m rather than should be used in 

calculating the output power (PP).  

Three issues arise from the () data given in [2, 3]. 

First, the data are not simply the proportion of incident light 

of a given wavelength (I0) that is absorbed (Ia), but are 

actually ln(I0/(I0 – Ia – Ir)), where Ir is the light reflected 

from the sample. Even if this were not the case, the second 

issue is the assumption that there is a significant rate of 

photosynthesis at  > 700 nm [2, 3]. Emerson and Lewis 

[5] observed a steep decline in q at  > 685 nm despite 

light absorbance at these wavelengths (see Figure 1). This 

‘red drop’ reflects the connection in series of two light-

driven reaction centres, one of which requires energy 

equivalent to that of 680 nm photons. While it might be 

expected that the wavelength-dependence of the rate of 

photosynthesis should be related to (), this need not be 

the case [5, 6]. Third, () depends on the amounts of the 

various pigments present in the tissue. While chlorophylls 

and carotenoids are present in higher plants, the 

phycocyanin incorporated in () in [2, 3] and other 

pigments are not, although they are present in some algae 

and some photosynthetic bacteria. Consequently, () 

varies between species and with environmental conditions 

[6, 7]. 

The theoretical upper limit of q is 0.125, although a 

more usual experimental estimate is 0.092 [8] and Gebhardt 

[4] suggested that m = 0.46. Taking these two values,  

should be less than 0.06, which is consistent with 

experimental determinations of the efficiency of higher 
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plant growth in full sunlight [9, 10], but is about a third of 

the value used in [2, 3]. 

 

 

III. THE CONSEQUENCES 
 

The consequence of the wavelength-dependence of  is that 

the approximations of () [2, 3] should be replaced with 

approximations of q()(). Figure 1 shows () (= Ia/I0) 

taken from [7], q() taken from [11] and q()(). It is 

clear that the () shown in [2, 3] and that shown in Figure 

1 are quite different. The approximations of q()() 

obtained in the style employed in [2, 3] are 
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where ' = 10
9
 ×  , which are also shown in Figure 1. 
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FIGURE 1. The absorbance factor (, ●) [7] and quantum 

efficiency (q, ○) [11] for Phaseolus vulgaris L., and the product 

(q, –––) as a function of wavelength. Also shown (– – – –) are 

the approximations to q given in Eq. (1). 

 

 

The calculations specified in [2, 3] were carried out, 

replacing () with q()() (Figure 1) in the estimate of 

input solar energy 
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where h = 6.63 × 10
-34

 J s, c = 3 × 10
8
 m s

-1
, T = 5776 K, k = 

1.38 × 10
-23

 J K
-1

 and f = (Rs/d)
2
 = (6.96 × 10

8
 m)

 2
/(1.5 × 

10
11

 m)
2
 ≈ 2.15 × 10

-5
. This necessitated the replacement of 

 with m in the estimate of the output power 

  

 PmP QP  , (3) 

 

but the rate of biomass accumulation (MP) was left 

unchanged from [3] 

 

 PP PM 81045.6  , (4) 

 

where the constant has units of kg of biomass J
-1

. 

Revised estimates of QP, PP and MP obtained from (2-4) 

are given in Table I. Clearly, QP is about 10% of that 

calculated in [3], because <q()()> is small compared 

with the <()> used in [3]. However, PP and MP are about 

25% of the corresponding values because m/ ≈ 2.5. 

While the values calculated here are smaller than those 

in [3], they still represent biologically plausible upper limits 

on the parameters. For example, the productivity of 

wetlands can reach 0.19 × 10
-6

 kg m
-2

 s
-1

 and that of some 

forests may be as much as 0.26 × 10
-6

 kg m
-2

 s
-1

 [12]. 

Comparison of the () and of the q() given in [5, 6, 

7, 11] indicates that there is considerable variation between 

species. From this one might infer that a small number of 

photosynthetic solar constants might be derived for 

particular classes of plants, algae and photosynthetic 

bacteria rather than assuming a single value. 
 

 

TABLE I. Comparison of the values calculated by Agrawal [3] 

and the revised values obtained by considering the wavelength-

dependence of q (Figure 1). In calculating PP Agrawal [3] 

assumed that  = 0.2, but it was assumed that m = 0.46 [4] for the 

revised values.  

 

Parameter Agrawal [3] This work (2-4) 

 QP (W m-2) 350 38 

 PP (W m-2) 70 17.5 

 MP (kg m-2 s-1) 4.5 × 10-6 1.1 × 10-6 

 

 

 
IV. CONCLUSIONS  

 

The analysis presented here yields a revised estimate of the 

photosynthetic solar constant of 17.5 W m
-2

 and a 

corresponding value for the rate of biomass accumulation. 

Underlying this revision is a consideration of the physical 

basis of photosynthesis and the data employed in the 

calculation.  
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