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Abstract 
A general model of the Curzon-Ahlborn type with general heat transfer law is discussed. A simplified version of this 

model is introduced. The effect of the ratio of heat transfer coefficients on the efficiency of the simplified version of 

Curzon-Ahlborn engine is presented. While the efficiency of the Curzon-Ahlborn engine at maximum power 

production is independent of the ration of heat transfer coefficients, the efficiency of the simplified version is not 

independent on the aforementioned ratio. The expression for the efficiency at maximum power production is derived 

in closed form. In order to highlight the differences visually and for the benefits of undergraduate students, power - 

efficiency curves are produced for both models. The validity of this simplified version model is discussed. Finally, 

simple derivation for the efficiency at maximum power production of the simplified model with n=1 is demonstrated. 

 

Keywords: Curzon-Ahlborn model, temperature difference, general heat transfer law, thermal resistance, simplified 
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Resumen 
Se discute un modelo general del tipo de Curzon-Ahlborn con la ley general de transferencia de calor. Se introduce 

una versión simplificada de este modelo. Se presenta el efecto de la razón de los coeficientes de transferencia de calor 

en la eficiencia de la versión simplificada del motor de Curzon-Ahlborn. Si bien el rendimiento de la máquina 

Curzon-Ahlborn en la producción de potencia máxima es independiente de la razón de los coeficientes de 

transferencia de calor, la eficiencia de la versión simplificada no es independiente de la relación antes mencionada. La 

expresión de la eficiencia en la producción de potencia máxima se obtiene en forma cerrada. A fin de destacar las 

diferencias visuales y para beneficios de estudiantes de pregrado, las curvas de eficiencia de potencia se producen 

para ambos modelos. Se discute la validez de esta versión simplificada del modelo. Por último, se demuestra la 

derivación simple de la eficiencia en la producción de potencia máxima del modelo simplificado con n = 1. 
 

Palabras clave: Modelo de Curzon-Ahlborn, diferencia de temperatura, ley general de transferencia de calor, 

Resistencia térmica, versión simplificada, potencia de salida, eficiencia, validación de simplificación. 
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I. INTRODUCTION 
 

The efficiency of heat engines has an upper bound, the 

Carnot efficiency [1]. This upper bound is achieved under 

the assumption of zero heat transfer rates, which results zero 

power output. Real heat engines run in finite time, thus 

constraining the operation to account for finite heat transfer 

rates. Curzon & Ahlborn [2] relaxed the conditions of 

Carnot engine to include finite times and finite heat transfer 

rates. Following these assumptions, the derived efficiency at 

maximum power operation is known as the Curzon-Ahlborn 

efficiency. Both efficiencies; the Carnot efficiency and the 

Curzon-Ahlborn efficiency are independent the ration of 

heat transfer coefficients at both boundaries of the heat 

engine and the heat reservoirs. Recently, Agrawal [3] 

analyzed the Curzon-Ahlborn model constraining the heat 

transfer rates at both sides of the engine to be the same. The 

resulted efficiency at maximum power operation was 

slightly different from the Curzon-Ahlborn efficiency. The 

present note extends the analysis to account for a general 

heat transfer law, following the ideas of Shaojun et al. [7]. 

This note also discusses the effect of heat conductance ratio 

on the efficiency for maximum power operation of the 

simplified model, compares the efficiencies of the two 

models and discusses the differences between the 

efficiencies. At the end, a simple derivation is introduced 

based on the Curzon-Ahlborn expression for the efficiency 

at maximum power operation. Section II presents the the 

Curzon-Ahlborn engine with a general heat transfer law, 

Section III focuses on the effect of the heat conduction ratio 

and reproduces the results of the simplified version of the 

Curzon-Ahlborn model, Section IV discusses the validity of 
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the simplified version model and simple derivation is 

presented, Section V compares the power-efficiency curves 

for the case n=4, and finally Section VI reports the 

concluding remarks. 

 

 

II. MODEL FORMULATION 

 
Consider a heat engine working between two heat reservoirs 

with T1 is the temperature of the hot reservoir and T3 is the 

temperature of the cold reservoir. Due to thermal resistance 

at the hot side of the engine, it senses lower temperature Th 

(Th < T1) and the cold side rejects heat to lower temperature 

Tc (Tc > T3). The schematics of the engine are shown in Fig. 

1a, and its T-S diagram is shown in Fig. 1b. The following 

equations are written for the endo-reversible heat engine. 

 

 

 
FIGURE 1a. Schematic diagram of the endo-reversible engine. 

 

 

 

FIGURE 1b. T-S diagram of the endo-reversible heat engine. 

The heat input to the heat engine Q1 is given by: 

 

.1 1 (1)Q xt  

 

Where α represents the heat conductance at the hot side, t1 is 

the time spent at the hot side and x is the temperature 

difference at the hot side and is given by: 

 

.1 (2)
n n

hx T T   

 

Similarly, the heat output from the engine 
3Q  is given by: 

 

.3 3 (3)Q yt  

 

Where β represents the heat conductance at the hot side, t3 is 

the time spent at the hot side and y is the temperature 

difference at the cold side and is given by: 

 

.3 (4)
n n

cy T T   

 

The endo-reversibilty condition states that the entropy 

generation of a complete cycle should satisfy the following 

condition: 

 

31
. (5)

h

QQ

T Tc

  

 

The power output from the heat engine P is given by the 

difference between heat input to the heat engine and the heat 

rejected from the heat engine. The expression for power is 

given by: 

 

1 3

0

. (6)
Q Q

P
t


  

 

Where t0 is the cycle time of the heat engine, which is the 

sum of the two isothermal and the two adiabatic branches. 

The time spent at the adiabatic branches is assumed to be 

proportional to the time spent at the isothermal branches. 

Then, the cycle time is given by: 

 

0 1 3( ). (7)t t t   

 

Where γ - 1 represents the fraction of the time spent at the 

adiabatic branches. 

Finally, the efficiency η is defined as the ratio of work 

output and the heat input and it is given by the expression: 

 

3

1

.1 (8)
Q

Q
    
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Equations (1) – (8) serve as the basic equations of the 

Curzon-Ahlborn model and its simplified version with the 

constraint of equal heat transfer rates (which basically are 

the product of the heat conductance by the temperature 

difference). 

In the following subsection, explicit expressions for the 

power output are derived as a function of the efficiency of 

the heat engine and the times spent at the hot and cold sides 

of the heat engine. This kind of expression is useful for 

plotting the characteristic curves of the heat engine, 

represented by power-efficiency plots.  

 
A. Curzon-Ahlborn engine with general heat transfer 

law 

 
In this section the expressions for the heat input and the 

output power are derived for the Curzon-Ahlborn engine. 

These expressions are useful for producing power-efficiency 

plots. After manipulating equations (1) – (8) (see appendix a 

for detailed derivation), the heat input to the engine Q1CA is 

given by: 

1

1 3

1

1 3

(1 )
. (9)

(1 ) 1
(1 )

CA

n n n

n

T T
Q

t t






 



 



 

 
 
 

 

 

Manipulating equations (6) – (8) gives the expression for 

power output of the Curzon-Ahlborn enginePCA: 

 

1 3

2
( 1)

2

((1 ) )
. (10)

(1 ) (1 ) 1/

CA

n n n

n

T T
P

k

 


 



 


  
 
 
 

 

 

Here k is the ratio between α and β. 

It is important to note that using these coordinates (i.e., 

time spent at each branch and efficiency) decouples the 

dependencies on time and efficiencies (after performing 

optimization with respect to time). This simplifies the 

optimization process. Equation (10) is written after 

performing the first optimization with respect to time 

division. 

Maximizing the power output for the case n=1, with 

respect to efficiency led to the well-known Curzon-Ahlborn 

efficiency: 

 

1 1 1 . (11)
CA c        

 

Here  is the ratio between 3T  and 1T  ( 3

1

T

T
  ) and c is 

the Carnot efficiency. 

 

 

III. SIMPLIFIED VERSION MODEL WITH 

DIFFERENT HEAT CONDUCTANCES 
 

Repeating the algebraic manipulation for the simplified 

version of the Curzon-Ahlborn model as described in [3] in 

detail considering general heat transfer model, assuming x=y 

but different heat conductance coefficients, led to the 

following expressions of heat input and power output. The 

expression of the heat input to the simplified version of the 

engine with different values of heat conductances Q1VK is 

given by: 

 

 
1

0 1 3((1 ) )
. (12)

(1 )
(1 ) 1 (1 )

SVK

n n n

n

t T T
Q

k

 




 



  

 

 

The power output for the simplified version of the engine 

with different heat conductances PSVK is given by: 

 

 
1 3((1 ) )

. (13)
(1 )

(1 ) 1 (1 )

SVK

n n n

n

T T
P

k

 




 



  

 

 

Power output relative to its maximum value for Curzon-Ahlborn 

engine, simplified version and simplified version with effect of heat 

conductance ratio vs. efficiency
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FIGURE 2a. Power output relative to its maximum value as a 

function of efficiency for the Curzon-Ahlborn model and the 

simplified model. For the simplified model, plots are produced for 

different values of the ration of heat transfer coefficients: =0, 1, 2, 

1000. 
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Power output relative to its maximum value for Curzon-Ahlborn 

engine, simplified version and simplified version with effect of 

heat conductance ratio vs. efficiency
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FIGURE 2b. Enlargement of Fig. 2a in order to increase clarity. 

Fig. 2a shows the plot of the power output relative to its 

maximum value of the Curzon-Ahlborn model (with n=1) 

and of the simplified version for different values of the heat 

conductance ratio. It is evident from these plots that the 

efficiency at maximum power point shifts around the 

Curzon-Ahlborn efficiency. Fig. 2b is enlargement of Fig. 

2a near the maxima in order to identify the curves. 

The expressions for the simplified version of the 

Curzon-Ahlborn model could be easily produced by 

replacing the parameter k by one (k=1). 

It is important here to note that the time division is not 

independent of efficiency due to the assumption of equal 

temperature differences at both side of the simplified 

version of the heat engine. Differentiating the power 

expression given by equation (13) with respect to efficiency 

gives the efficiency at maximum power production,  

 

,
. (14)

(1 3 )
1 1

2( 1)

MAX SVK

c

c ck k

k




 


 
 



 

 

From equation (14) one can note that the efficiency of the 

simplified model with different heat conductance values is 

not independent of the ratio k. 

 

 

Efficiency at maximum power production of Curzon-Ahlborn 

engine and the simplified version for different valus of the 

heat conductance ratio vs. Carnot efficiency
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FIGURE 3. Curzon-Ahlborn efficiency and the efficiency at 

maximum power production of the simplified version vs. the 

Carnot efficiency. 

 

Fig. 3 shows the maximum efficiency of the Curzon-

Ahlborn (with n=1) and the efficiency at maximum power 

production for the simplified version as a function of the 

Carnot efficiency for different values of heat conductance 

ratio. It is clear from the plot that the differences are not 

negligible at the higher range of Carnot efficiency. 

Fig. 4 shows the efficiency at maximum power output of 

the simplified model (with n=1) as a function of the thermal 

conductance ratio and for Carnot efficiency of 64%. For the 

West Thurrock Coal Fired Steam Plant, the efficiency 

increases from 35% up to 43%. 

 

Efficiency at maximum power production of the simplified 

heat engine  as a function of the conductance ratio
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FIGURE 4. the efficiency at maximum power production of the 

simplified version of the Curzon-Ahlborn engine. 

 

To reproduce the efficiency at maximum power production 

as reported in [3] (written in terms of the Carnot efficiency), 

we substitute k=1 to get: 
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,
. (15)

(4 )
21 1

24

MAX SV

c c

cc c

 


 
 


 

 

 

For a case where ηC << 1 the efficiency at maximum power 

production is given by: 

 

,
. (16)

2
MAX SV

c   

 

The operative efficiency of the heat engine will range from 

the efficiency at maximum power production to the Carnot 

efficiency, thus the operative efficiency could be 

approximated as the mean value of both efficiencies and it 

would be given by: 

 

.
32 (17)

2 4

C

C

Copr 








   

 

In the next section, we derive the last expression in a much 

simpler way based on the Curzon-Ahlborn efficiency. 

 

 
IV. VALIDITY OF THE SIMPLIFIED MODEL 

 
In this section, the validity of the simplified model is 

discussed. The main question: what is the reason of the 

good agreement between the efficiency of the simplified 

model (with n=1) and the Curzon-Ahlborn efficiency? In 

order to answer this question, we compared the differences 

between x and y values of both models. By adopting the 

results given in [3] the difference Δx or equivalently Δy is 

given by: 

 
2

1 3
. (18)

2
CA SV

T T
x x x


   

 
 
 

 

 

This expression could be written in a dimensionless form by 

dividing by T1. The normalized expression is given by: 

 
2

*
.

1

1
(19)

2

x
x

T

 
  

 
 
 

 

 

The results of substituting numerical values for the three 

cases given in [3] shows that the value of Δx is less than 

5%. This small variation of the result allows expansion of 

the Curzon-Ahlborn efficiency to get different kinds of 

approximation. In order to demonstrate the differences we 

perform the calculation for all the cases given in [3]: 

 

1. West Thurrock (U.K.) Coal Fired Steam Plant [4] 

 

*

1 3838 , 298 , 34 , % 4%. (20)T K T K x K x       

 

2. CANDU (Canada) PHW Nuclear Reactor [5] 

 
*

1 3573 , 298 , 11 , % 1.9%. (21)T K T K x K x     

 

3. Larderello (Italy) Geothermal Steam Plant[6] 

 
*

1 3523 , 353 , 4 , % 0.8%. (22)T K T K x K x     

 

If we approximate the Curzon-Ahlborn efficiency we can 

get the same result of the simplified version model as 

follows:  

1) Write the expression in terms of Carnot efficiency. 

The result is given by equation (10). 

2) Multiply and divide by the conjugate of the 

expression given by equation (10). 

3) Approximate the square root up to the first term of 

Taylor series. 

Performing the steps one by one by using mathematical 

symbols is shown by: 

 

 
1 1

1 1 1 1
1 1 1 1

C C

CA C C

C C

 
  

 

 
      

   
 

. (23)

1 1 2
2 2

C C

C C

 

 
 

  

 

 

The result is exactly the efficiency at maximum power 

production of the simplified model as given by equation 

(15).  

Power relative to its maximum value of the simple radiative 

model for different values of heat conductance ratio k =0.1, 

1, 2 and for complete radiative vs. efficiency 
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FIGURE 5a. Power relative to its maximum value for the case 

n=4 and for τ=0.5. The plot compares between the exact model 

when k=1 and the simplified model for k=0.1, 1 and 2. 
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Power relative to its maximum value of the simple radiative model 

for different values of heat conductance ratio k =0.1, 1, 2 and for 

complete radiative vs. efficiency 
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FIGURE 5b. Enlargement of fig. 5a to increase clarity. 

 

 
V. POWER-EFFICIENCY CURVES FOR n=4 

 
In this section the power - efficiency curves for the case n=4 

are compared. Plot 5.a and 5.b show the relative power 

output of the Curzon-Ahlborn model with n=4 for the exact 

model and for the simplified model with different values of 

 (=0.1, 1, 2). It is obvious from the plots that the 

efficiencies at maximum power production are slightly 

different. That means with much less effort it is possible to 

easily estimate the performance of the heat engine based.  

 

 

VI. CONCLUDING REMARKS 

 
The salient features of the present work can be summarized 

as follows: 

 A simplified Curzon-Ahlborn model with general heat 

transfer law is introduced. 

 The effect of heat conductance ratio on the maximum 

efficiency of the simplified version of the Curzon-Ahlborn 

is discussed and it was found that the value of the efficiency 

varies significantly as shown in figures 3 and 4. 

 The endo-reversible power output can be expressed in 

terms of efficiency. It turns out to be that the power output 

expression is very simple as given by equation (9). 

 The temperature difference x between the values of the 

Curzon-Ahlborn engine and its simplified version explains 

the small differences while comparing the efficiencies.  

 The simplified version of the Curzon-Ahlborn (for 

n=4, see Fig. 5a and 5b) produces values of efficiency at 

maximum power production, not far from the results of the 

exact model.  

 Another simple derivation was presented, by using 

simple and very useful a mathematical trick. In fact, starting 

from the Curzon-Ahlborn efficiency, we derived the 

efficiency at maximum power production of the simplified 

version. 

 The present derivation is quite simple and can be 

easily reproduced by the students. 
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Appendix A 

 
From Eq. (1) and Eq. (3) we get: 

 

3 3

1 1

. ( 1)
Q yt

A
Q xt




  

 

Rearranging Eq. (2) gives: 

 

1 . ( 2)
n n

hT T x A   

 

Rearranging Eq. (4) gives: 

 

3 . ( 3)
n n

cT T y A   

 

Rearranging Eq. (8) and Eq. (5) give: 

 

3

1

1 . ( 4)c

h

Q T
A

Q T
    

 

Squaring Eq. (A4) and substituting the relations given in Eq. 

(A2) and Eq. (A3) leads to: 

 

3

1

(1 ) . ( 5)

n n
nc

n n

h

T T y
A

T T x



  


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Rearranging Eq. (A5) gives: 

 

   1 31 1 . ( 6)
n nn n

T x T y A       

 

Substitution Eq. (A1) in Eq. (a4) gives: 

 

3

1

1 . ( 7)
t y

A
t x





   

 

Substituting y from Eq. (A7) in Eq. (A6) and solving for x, 

one gets: 

 

 

   

1

1

3

1
. ( 8)

1 1

n n
n

n

T T
x A

t




 



 


  

 

 

Now substituting x in Eq. (1) and rearranging terms, gives 

Eq. (9). 

In order to equation (10) we multiply the expression of 

the heat input Q1 with the efficiency and divide by cycle 

time. Differentiating the power expression with respect to 

the time spent at the hot side (under the assumption of total 

cycle time), and equating the derivative to zero, leads to the 

aforementioned expression of power output. 

 


