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Abstract 
A textbook exercise about a block pulled on a rough surface by a conservative force and against a dissipative frictional 

force is described using a 4-vector relativistic thermodynamics approach, taking into account thermal effects produced 

in diathermal contact with a heat reservoir. The conservative force is described using a relativistic electromagnetic 

formalism and the whole exercise is solved in a Lorentz covariant form, first in ‘privileged frame’ S∞ in which both 

surface and heat reservoir are at rest, and after that in frame SA, in standard configuration with respect to frame S∞. This 

exercise could by of interest to undergraduate students with an interest in Special Relativity and Thermodynamics. 

 

Keywords: Special Relativity, four-vectors, relativistic thermodynamics first law. 

 

Resumen 
Se describe un ejercicio de libro de texto, un bloque arrastrado sobre una superficie rugosa mediante una fuerza 

conservativa y contra una fuerza de fricción, utilizando un formalismo de 4-vectores de termodinámica relativista, 

considerando los efectos térmicos que se producen en el contacto diatermo del bloque con un foco térmico. La fuerza 

conservativa se describe utilizando un formalismo electromagnético relativista y el ejercicio completo se resuelve en 

forma covariante Lorentz, primero en el sistema de referencia 'privilegiado' S∞ en el que tanto la superficie como el 

foco térmico se encuentran en reposo, y después en el sistema de referencia SA, en configuración estándar con respecto 

a S∞. Este ejercicio puede ser atractivo para aquellos estudiantes universitarios con interés en la Relatividad Especial y 

en la Termodinámica. 

 

Palabras clave: Relatividad Especial, cuadrivectores, primer principio de la termodinámica relativista. 

 

PACS: 05.70.-a, 03.30.+p, 01.55. + b                                                                                                        ISSN 1870-9095 

 

 

I. INTRODUCTION 
 

Introductory physics textbooks consider exercises in which 

a solid block moves on a rough surface with a friction force 

applied to it (Fig. 1) ([1], p. 198). A block Z, with mass m, 

is accelerated from rest along a table by a force F (all forces 

are one-dimensional and vectorial notation is dropped) 

applied to it and against a sliding friction force f. It is found 

by experiment that a portion of the table along which the 

block slides becomes warmer ([2], pp. 153-154). The 

thermal effects of friction forces are rarely formalized in 

university textbooks ([3], pp. 204-207). 

It is always interesting to ask for the description of the 

same process from the point of view of an observer that 

moves with constant speed with respect to the ‘privileged 

frame’ S∞ (lab frame) [4]. Galileo’s Principle of Relativity 

is rarely applied to textbook exercises that include thermal 

effects. 

On the other hand, university physics textbooks do not 

solve this kind of exercise either using concepts of special 

relativity ([5], pp. 359, 361) or Minkowski’s 4-vector 

formalism [6]. This absence of special relativity and 4-

vector formalism in the resolution of exercises in university 

physics textbooks is a pedagogical shortcoming [7].  

 
 

FIGURE 1. A block Z, with an electric charge q fixed in it, is 

located inside a horizontal electric field ε produced between the 

plates of a parallel-plates charged capacitor C. A constant 

horizontal force F = qε pulls Z along the x axis and a constant 

kinetic frictional force f –with friction constant µ – opposes F. 

Forces are applied during a time interval Δt = t0. Body Z center of-

mass displacement is L and it varies its velocity from vi to vf. The 

large table B∞ – a heat reservoir at temperature T – and the 

capacitor C are at rest in reference frame S∞. Clocks, at rest or in 

movement, exhibit a universal time t. 
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When an exercise is solved in the relativistic Einstein-

Minkowski 4-vector formalism, the solution is Lorentz 

invariant, in contrast with the classical solution, which is 

not [8]. Moreover, the Newton-Galileo solution is obtained 

in the limit in which c → ∞. 

In contrast to what happens in university textbooks, the 

special theory of relativity continues to arouse great interest 

among both teachers [9] and students, as is evidenced by 

the important number of articles on this topic [10] 

published during the past few years in journals devoted to 

undergraduate physics education [11]. 

 

 

 
 

FIGURE 2. Relativistic description of the situation in Fig. 1. 

Clocks at rest in S∞ indicates its time t. Body Z proper time τ is 

measured by a clock attached to it [11]. Thermal energy is 

characterized as photons with frequency ν absorbed by the heat 

reservoir B∞. 

 

 

II. RELATIVISTIC THERMODYNAMICS 

FIRST LAW 
 

Consider the relativistic description of the process given in 

Fig. 2. A rigid (see Appendix) body Z with constant inertia 

MZ (see Appendix) which moves with initial velocity vi in 

frame S∞, has linear momentum pi = γ(vi)MZvi and total 

energy Ei = γ(vi)MZc
2 

[12], where γ(v) = (1 – v
2
/c

2
)

-1/2
, and 

its initial 4-vector [13] energy function [14] 
iU


 

is (for 

typographical reasons, a contravariant column 4-vector is 

expressed as a row 4-vector, maintaining its contravariant 

Greek index): 

 

 2( ) ,0,0, ( ) .i i i iZ ZU c v M v v M c  
           (1)

 

 

For a finite process, during which different forces are 

applied to Z during a time interval t0, it reaches a final 

velocity vf , and its 4-vector final energy function 
fU 

 is: 

 

 2( ) , 0, 0, ( .)f f f fZ ZU c v M v v M c


 
                (2)

 

 

For a conservative force F = qԐ with associated 4-vector 

displacement  0,0,0, ,L L ct   L being the displacement 

of its centre-of-mas, the 4-vector work 
FW   is (see 

Appendix): 

 

 0 ,0,0, .FW cqEt qEL                          (3) 

 

This 4-vector 
FW   is expressed as the (minus) increment in 

energy function of a work reservoir (the battery that 

provides the electric charge on capacitor and the electric 

field), with .F FW U   [15]. 

In a process in which body Z slides on the surface of the 

quasi-infinite inertia system B∞ [4], the force f is described 

using two phenomenological rules ([16], pp. 6-7): 

Amonton’s rule, where the frictional force f is proportional 

to the normal N holding the two surfaces, and it is 

independent of the area of the surfaces in contact, and 

Coulomb’s rule, where force f is independent of the sliding 

velocity ([17], pp. 884-885). We assume that force f is 

described in special relativity using these rules, with: f = 

−µMZg, where N = MZg. A friction force has no associated 

displacement in frame S∞, in which B∞ remains at rest ([18], 

p. 616), its ‘product force-displacement’ [19] is null and it 

is a zero-work force [20]. The 4-vector work 
FW   for f is: 

 

 Z 0 ,0,0,0 .fW c M gt                         (4) 

 

The 4-vector 
FW   cannot be expressed as the increment in 

energy function of a work reservoir. 

For a solid body, forces are simultaneously applied to it 

in frame S∞ during time interval t0 [21]. The 4-vector total 

work ([22], p. 84): 
F fW W W     is: 

 

  Z 0 ,0,0, .LW c q M g t q                (5) 

 

When a friction force acts during a certain mechanical 

process on a rigid body, like the process described in Fig. 2, 

mechanical energy is dissipated as heat. A complete 

description of such a process includes a relativistic descrip-

tion of heat [23], and its corresponding 4-vector thermal 

energy .Q
  

Energy interchanged as heat is formed by photons [24] 

with total zero linear momentum (thermal photons) (see 

Appendix). A photon with frequency ν has energy ep = hν. 

In the thermal photons monochromatic approximation [25] 

it is assumed that every interchanged photon has the same 

frequency. During a friction process, total energy Ep = Nhν 

is interchanged as thermal energy, where N is the number of 

photons transferred. We take heat Q to be positive when 

heat is transferred to body Z and negative when the 

transfers are out of the body. With Q = −Nhν, the 4-vector 

heat Q
  is given in frame S∞ as [8]: 

 

 0,0,0, ,Q Nh                             (6) 
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The inertia of this ensemble of photons [26] is 
2( )TM Nh c   ([27], p. 232). The 4-vector .Q

  can be 

expressed as the (minus) increment in energy function of a 

heat reservoir (the floor B∞) at temperature T, with 

TQ U    [15]. 

The Relativistic Thermodynamics First Law in frame S∞ 

for the process under consideration is given by [8]: 

 

.f iU U W Q                                 (7) 

 

According to our treatment of work for a conservative force 

( )F FW U    and heat ( Q
  = −ΔUT), the Relativistic First 

Law can be expressed as: 

 

.F T fU U U W                        (8) 

 

This equation emphasizes the role played by the heat 

reservoir B∞ as a thermal radiation sink, and the role as 

work reservoir of the battery that charges the capacitor C, 

which provides the work done on Z ([28], p. 290). 

From Eq. (8) and the previously obtained 4-vectors, one 

obtains the equations: 

 

 Z Z Z 0( ) ( ) ,f f i iv M v v M v q M g t            (9) 

 
2

Z

2

Z( ) ( ) .f iv M c v M c q L Nh             (10) 

 

Eq. (9) is the relativistic impulse-momentum equation 

(relativistic Newton’s second law) for the process under 

consideration and Eq. (10) is the corresponding energy 

equation (relativistic energy conservation law). Taking into 

account that ([29], p. 37): 

 

 

2

   

d
,

( )

d

d d

( )v c x
v

v v t





      

 

for a finite process with constant force F, applied during 

time interval t0, and constant inertia MZ, with the body’s 

centre-of-mass displacement L: 

 

 
Z

Z

2

0

( )
.

( )

M v c FL

M v v Ft





    


 

 

When the impulse-momentum Eq. (9) is fulfilled then the 

relativistic centre-of-mass equation is fulfilled too, with: 

 

 2

Z Z

2

Z( ) ( ) .f iv M c v M c q M g L           (11) 

 

This relativistic centre-of-mass equation is expressed as 

ΔKZ = FΔxcm, where Kz is the kinetic energy, F is the 

resultant force applied on Z and Δxcm is its centre-of-mass 

displacement [30]. Comparing the energy equation Eq. (10) 

and the centre-of-mass equation, Eq. (11), one obtains the 

thermal energy equation: 

 

Nhν = µMZgL,                              (12) 

 

with ΔUT = µMZgL. 

 

A. Description in frame SA 

 

For an observer in frame reference SA in standard 

configuration with respect to S∞ [31], with velocity 

 ,0,0V V  with respect to frame S∞, the Lorentz 

transformation matrix for the standard configuration is ([6], 

p. 236): 

 

( ) 0 0 ( ) ( )

0 1 0 0
( ) ,

0 0 1 0

( ) ( ) 0 0 ( )

V V V

L V

V V V





  

  

 
 
 

  
 
  

        (13) 

 

with β(V)= V/c and 
1/2

2( ) 1 ( )V V 


   
. When an exercise 

is solved in the frame S∞ using 4-vector equations, the 

corresponding magnitudes (velocity, force, frequency, etc.,) 

in SA are obtained through relativistic transformation 

(relativistic transformation of velocity, relativistic force 

transformation, Doppler effect, etc.) and the corresponding 

4-vectors in SA are obtained through the Lorentz 

transformation [32]. For example, from 4-vector initial 

velocity iv
: 

 

 ( ) ,0,0, ( ) ,i i i iv v v v c    

 

the corresponding 4-vector Aiv
, 

 

 A A A( ) ( ) ,0,0, ( ) ,i i i i iv L V v v v v c  

   
 

 

implies that: 

 

A A( ) ( ) ( )( ),v v v V v V                      (14) 

 

A

2( ) ( ) ( )(1 / ),v v V vV c                   (15) 

 

and 

 

2A .
1 /

i
i

i

v V
v

vV c





 

 

Any other magnitude in SA is obtained in a similar way [8]. 

The Lorentz transformation immediately provides the 

correct description in SA for the process previously 

described in S∞. For instance, with 
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 02A 0( ) ( ) ,0,0, ( ) ,F F

V
W L V W c V qE t L V qE L Vt

c

  

  
  

     
  

 

and with:  

 

 A Z Z0 0( ) ( ) ,0,0, ( ) ,f fW L V W c V M gt V M gVt  

     

 

one obtains that force f has a non null four component in 

SA, with ‘force displacement product’ WfA = µγ(V)MZgVt0 

[33] and that forces F and f are neither applied 

simultaneously nor during the same time interval en SA 

[34]; and with:  

 

 2

A ( ) ( )( ) ,0,0, ( ) ,Q L V Q c V Qc V V Q  

     

 

one obtains that thermal radiation in SA has linear 

momentum ppA = γ(V)MTV, according to the Principle of 

Inertia of Energy (Einstein Equation) [8]. With the 

relativistic first law of thermodynamics expressed in SA as: 

 

A A A A ,f iU U W Q                               (16) 

 

where subindex A means the 4-vector as measured in SA, 

the corresponding 4-vectors 
A A A, ,f iU U W   , and AQ

 

provide a description of the process under consideration, 

which is equivalent to the description given in S∞: When 

equations are fulfilled in S∞ the corresponding equations in 

SA are fulfilled too. For instance, using Eqs. (14-15), in SA 

one has:  

 

  0 02Z Z Z( ) ( ) ( ) ( )  ( )f f

V
V v M v V V M V V q t L V M gt

c
      

 
     

 

2
( ) ,

Nh
V V

c


                                 (17) 

 2 2

0Z Z Z 02
( ) ( ) 1 ( )  ( ) ( )

f

f

v V
V v M c V M c V q L Vt V M gVt

c
      

 
     

 

( ) .V Nh                                    (18) 

 

For instance, the Impulse-Momentum equation in frame SA 

Eq. (17) can be expressed as the sum:  

 

  0Z Z( ) ( )[ ]f fV v M v q M g t               (19) 

+ 

Z

2

2 Z

2( ) ( ) ,[ ]f

V
V v M c M c q L Nh

c
           (20) 

 

where Eq. (19) is the Impulse-Linear Momentum equation 

in S∞ and Eq. (20) is the Energy Equation in S∞. Because 

these equations are fulfilled in S∞, Eq. (17) is fulfilled in SA. 

A similar result is obtained for the Energy Equation Eq. 

(18) in frame SA.  

 

 

 

III. CONCLUSIONS  
 

From Eqs. (9, 10, 11), in the limit c → ∞ [with limc→∞ γ(v)v 

→ v and limc→∞   2 2( ) 1 / 2]v c v   , the corresponding 

classical description for the considered process (MZ ≡ m) is:  

 

  0;f imv mv q mg t                       (21) 

2 21 1
;

2 2
f imv mv q L Q                         (22) 

 2 21 1
;

2 2
f imv mv q mg L                       (23) 

.Q mgL                                   (24) 

 

Eq. (21) (impulse-momentum equation) is the Newton’s 

second law applied to Z; Eq. (22) is the corresponding first 

law of thermodynamics ([1], p. 194):  

 

cm ,K U W Q     

 

applied to the process [35, 36], with ΔU = 0 because Z 

temperature is constant – only the conservative force F = q  

applied to Z does work –; Eq. (23) is the centre-of-mass 

equation which can be obtained considering that ([37], p. 

1063):  

 
2[ / 2]

;
[ ]

 d d

 d  d  

v x
v

v t
   

 

with constant mass m and force F and from Eq. (21) one 

obtains that:  

 
2[ / 2] ,m v F x    

 

for a finite process ([5], pp. 359, 361); Eq. (23) is not a 

work-energy theorem ([30], p. 506); and Eq. (24), obtained 

by comparison between Eq. (22) (energy equation) and Eq. 

(23) (centre-of-mass equation), completes the energy 

balance for the process, showing that the interchanged 

thermal energy is the difference (mechanical energy 

dissipated) between the work done on Z and Z increment in 

kinetic energy. An equivalent classical description in SA, 

from Eqs. (17, 18) in the approximation c → ∞, can be 

obtained.  

Although the 4-vector relativistic thermodynamics first 

law formalism seems more complicated than the classical 

Newton’s second law and thermodynamics first law 

approach, it presents some pedagogical advantages: (i) The 

definition of the 4-vector energy function U  – the 

corresponding relativistic internal energy [38]– must be 

provided, based on the Einstein’s equation interpretation for 

an extended body; (ii) For a conservative force F, its 4-

vector work 
FW 

 can be obtained from the interaction of 

the body with a work reservoir; (iii) For a non-conservative 

force f [39] its ‘force-displacement product’ is zero (it does 

not do work) and its 4-vector has a null temporal 
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component; (iv) Heat can be characterised in frame S∞ as a 

4-vector Q  associated to an ensemble of photons with 

null total momentum [40]; (v) In frame S∞ equations, 

expressed with 4-vectors, are Lorentz invariant and the 

description of a process in frame SA is obtained using the 

Lorentz transformation. Writing a physics law in 

Minkowski’s 4-vector notation, integrating space and time, 

highlights its invariance, simplifies the formalism and 

favours calculations. (vi) The relativistic impulse-

momentum equation (Newton’s second law) and the 

relativistic energy equation (thermodynamics first law) are 

simultaneously applied to the process under consideration 

using the relativistic thermodynamics first law; (vii) The 

centre-of-mass equation is obtained integrating the 

corresponding impulse-momentum equation, showing that 

it is not an energy equation. (viii) Classical physics 

exercises can be solved using a fully Lorentz covariant 

formalism that includes mechanics, thermodynamics and 

electromagnetism 4-vector magnitudes.  

 

 

APPENDIX  
 

1. Energy function. Body Z is a solid crystal composed by 

NA atoms of the atomic element Z

N A . Body Z energy 

function U(T) at absolute temperature T is given by [8]:  

 

                   
0( ) ( );AU T N u U U T    

                            2

e

2

0 p n ,u N m m c Z N m c     

                          
N A C ,U U U U    

                  
0

( )  d( )
T

A PU T N c T T    

 

where mp, me and mn are proton, neutron and electron mass, 

respectively, and U  is (negative) body Z formation energy, 

or energy released when the body is formed from its 

elementary particles, with 
NU  as energy nucleus formation 

(defect of mass), 
AU  atom energy formation and 

CU  crystal 

energy formation (zero-point energy is assumed to be null 

[41]), respectively ([42], pp. 489-491), and where cP is solid 

capacity at constant pressure per atom (assuming expansion 

coefficient α = 0).  

The Inertia of Energy Principle [43] allows us to obtain 

the body’s inertia M(T), at temperature T, as [44]:  

 
2( ) ( )M T U T c . 

 

This equation (the Einstein Eq. [45]) relates two concepts, 

function energy and inertia, classically apart. An energy 

function increasing on a body correspondingly increases the 

body’s inertia: A block at a high temperature has more 

inertia than the same block at a lower temperature. 

Assuming an isothermal process for body Z during the 

process, the body’s inertia –although temperature 

dependent – remains constant, with M(T) = MZ.  

2. Solid body in Relativity. In the Special Theory of 

Relativity any perturbation on a body constituent travels 

with finite velocity. No body can be perfectly rigid in 

Relativity and it deforms under the action of a force applied 

to it ([46], p. 103). A deformation effect is transmitted to 

the rest of the body with finite velocity, v s, the velocity of 

sound in the body’s material.  

Let b be a characteristic linear dimension of a rigid body 

Z. If the time interval δt = b/vs –time delayed for a sound 

wave to travel along the body – is orders of magnitude 

smaller than interval of time Δt during which forces are 

applied to body Z, then, and under the action of a moderate 

force, it can be considered that Z behaves as a rigid solid 

even from a relativistic point of view. We will consider a 

robust enough block so that its plastic distortion response to 

the applied force can be considered negligible.  

The expression for a rigid body magnitude –linear 

momentum, total energy, kinetic energy, etc.– is obtained 

by changing the mass m in the corresponding expression for 

a point particle for the inertia M of the body (Principle of 

Similitude [8]). For instance, for a rigid body moving with 

velocity v its kinetic energy is k = [γ(v)−1]Mc
2
, which is 

obtained from the kinetic energy expression k = [γ(v) − 

1]mc
2 
for a point particle with mass m.  

3. Work. Body Z (instantaneous) velocity ( ,0,0)v v  in S∞ 

is characterized by the 4-vector velocity v , given by [47]:  

 

 (
 

d

d
) ,0,0, ,

x
v v v c


 


   

 

where  ,0,0d d  , dx x c t   is the 4-vector infinitesimal 

displacement and τ is body Z proper time, with dτ/dt = γ
-1 

(v), where dt is the corresponding time interval measured in 

frame S∞. The 4-vector Minkowski force Fµ is given by Eq. 

([6], p. 280)  

 

 1( ) ,0,0, ( ) ,F v q v c q v      

 

and its corresponding infinitesimal 4-vector work 
FW   is 

[45]:  

 

 ,d 0,0 d, ,FW cq t q x    

 

The 4-vector Minkowski force Fµ is obtained by deriving 

the 4-vector work 
FW   with respect to Z proper time dτ: 

 

1 ,
d 

FW
F c


 



  

This obtention of Fµ shows that 
FW   is itself a 4-vector. 

For a finite process (with constant F):  

 

 0 ,0,0, .FW cq t q L    

 

In contact with B∞, the friction force f does not do work, its 

velocity is null, its 4-vector fµ is given by:  
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 Z ,0,0,0 ,f M g    

 

and its 4-vector work 
fW   is:  

 

 Z 0 ,0,0,0 .fW M gt    

 

4. Thermal energy. A photon j with frequency ν has energy 

ej = hν, linear momentum pj = (hν/c)uj (one-dimensional), 

where uj is its direction ±x and 4-vector energy function:  

 

,0,0, .p

h
u c h

c

 


 
  
 

 

 

For an ensemble of N photons which move chaotically in ±x 

direction in a thermal reservoir, its total linear momentum is 

null [48], pp = ∑j(hν/c)uj = 0, its total energy is Ep = ∑jhν|uj| 

= Nhν and its 4-vector energy function is [45]:  

 

 0,0,0, .pU Nh   

 

 

REFERENCES 
 

[1] Serway, R. A., Jewett, J. W. Jr., Principles pf Physics. A 

Calculus-Based Text, 3rd Ed. (Harcourt College Publishers, 

Orlando, 2002).  

[2] Halladay, D., Resnick, R., Walker, J., Fundamentals of 

Physics, 6th Ed. (John Wiley and Sons, New York, 2001). 

[3] Knudsen, J. M., Hjorth, P. G., Elements of Newtonian 

Mechanics. Including Nonlinear Dynamics, (Springer, 

Heidelberg, 2000). 

[4] Galili, I., Kaplan, D., Extending the application of the 

relativity principle: Some pedagogical advantages, Am. J. 

Phys. 65, 328-335 (1997). 

[5] Mallinckrodt, A. J., Leff, H. S., All about work, Am. J. 

Phys. 60, 356-365 (1992).  

[6] Freund, J., Special Relativity for Beginners. A Textbook 

for Undergraduates, (World Scientific, Singapore, 2008). 

[7] Güémez, J., ¿Es posible una Termodinámica 

Relativista?, Rev. Esp. Fis. 24, 47-57 (2010). 

[8] Güémez, J., An undergraduate exercise in the first law 

of relativistic thermodynamics, Eur. J. Phys. 3, 1209-1232 

(2010).  

[9] Hecht, E., Einstein never approved of relativistic mass, 

Phys. Teach. 47, 336-341 (2009); Hecht, E., Einstein on 

mass and energy, Am. J. Phys. 77, 799-806 (2009); Hecht, 

E., How Einstein confirmes E0 = mc
2
, Am. J. Phys. 79, 591-

600 (2011).  

[10] Huggins, E., Note on Magnetism and Simultaneity, 

Phys. Teach. 47, 587-589 (2009).  

[11] Huggins, E., Special relativity in week one: 1) The 

Principle of Relativity, Phys. Teach. 49, 148-151 (2011); 

Huggins, E., Special relativity in week one: 2) All clocks 

run slow, Phys. Teach. 49, 220-221 (2011); Huggins, E., 

Special relativity in week one: 3) Introducing the Lorentz 

contraction, Phys. Teach. 49, 148-151 (2011). 

[12] Hecht, E., On defining mass, Phys. Teach. 49, 40-44 

(2011). 

[13] Baierlein, R., Does nature convert mass into energy?, 

Am. J. Phys. 75, 320-325 (2007). 

[14] Battino, R., “Mysteries” of the First and Second Laws 

of Thermodynamics, J. Chem. Educ. 84, 753-755 (2007). 

[15] Barrow, G. M., Thermodynamics should be built on 

energy-not on heat and work, J. Chem. Educ. 65, 122-125 

(1988). 

[16] Swartz, C., Back-of-the-Envelope Physics, (Johns 

Hopkins University Press, Baltimore, 2003). 

[17] Ringlein, J., Robbins, M. O., Understanding and 

illustrating the atomic origins of friction, Am. J. Phys. 72, 

884-891 (2004). 

[18] Besson, U., Work and energy in the presence of 

friction: the need for a mesoscopic analysis, Eur. J. Phys. 

22, 613-622 (2001). 

[19] Hilborn, R. C., Let’s ban work from physics, Phys. 

Teach. 38, 447 (2000). 

[20] Leff, H. S., Mallinckrodt, A. J., Stopping objects with 

zero external work: Mechanics meets thermodynamics, Am. 

J. Phys. 61, 121-127 (1993). 

[21] Cavalleri, G., Salgarelli, G., Revision of the relativistic 

dynamics with variable rest mass and application to 

relativistic thermodynamics, Nuovo Cimento 42, 722-754 

(1969). 

[22] Gamba, A., Physical Quantities in Different Reference 

Systems According to Relativity, Am. J. Phys. 35, 83-89 

(1967). 

[23] van Kampen, N. G., Relativistic Thermodynamics, J. 

Phys. Soc. Japan 26 Supplement 316-321 (1969). 

[24] Romer, R. H., Heat is not a noun, Am. J. Phys. 69, 

107-109 (2001). 

[25] D Shanks, Monochromatic Approximation of 

Blackbody Radiation, Am. J. Phys. 24 244-246 (1956).  

[26] Huggins, E., Weighing photons using bathroom scales: 

A thought experiment, Phys. Teach. 48, 287-288 (2009). 

[27] Ruby, L., Teaching Special relativity without calculus, 

Phys. Teach. 47, 231-232 (2009). 

[28] Mungan, C. E., Thermodynamics of a Block Sliding 

Across a Frictional Surface, Phys. Teach. 45, 288-291 

(2007). 

[29] Tsamparlis, M., Special Relativity. An Introduction 

with 200 Problems and Solutions, (Springer, Berlin, 2010). 

[30] Arons, A. B., Developing the energy concepts in 

introductory physics, Phys. Teach. 27, 506-517 (1989). 

[31] Rindler, W., Relativity. Special, General, and 

Cosmological, 2nd Ed. (Oxford University Press, New 

York, 2006). 

[32] Rohrlich, F., True and apparent transformations, 

classical electrons and relativistic thermodynamics, Nuovo 

Cimento 45, 76-83 (1966). 

[33] Mungan, C. E., The Bernoulli equation in a moving 

reference frame, Eur. J. Phys. 32, 517-520 (2011). 

[34] Adler, C. L., Magnetism and simultaneity, Phys. 

Teach. 47, 221-223 (2009). 

[35] Erlichson, H., Internal energy in the first law of 

thermodynamics, Am. J. Phys. 52, 623-625 (1984). 

[36] Jewett, J. W. Jr., Energy and the Confused Student IV: 

A global approach to energy, Phys. Teach. 46, 38-43 



Special Relativity and textbook exercises 

Lat. Am. J. Phys. Educ. Vol. 5, No. 3, Sept. 2011 543 http://www.lajpe.org 

 

(2008). 

[37] Arons, A. B., Development of energy concepts in 

introductory physics courses, Am. J. Phys. 67, 1063-1067 

(1999). 

[38] Lehrman, R. L., Energy Is Not The Ability To Do 

Work, Phys. Teach. 11, 15-18 (1973). 

[39] Keeports, D., The common forces: Conservative or 

nonconservative?, Phys. Educ. 41, 219-222 (2006). 

[40] Kolbenstvedt, H., The mass of a gas of massless 

photons, Am. J. Phys. 63, 44-46 (1995). 

[41] Mungan, C. E., Chemical potential of the one-

dimensional simple harmonic oscillators, Eur. J. Phys. 30, 

1131-1136 (2009). 

[42] Hecht, E., An Historico-Critical Account of Potential 

Energy: Is PE Really Real?, Phys. Teach. 41, 486-493 

(2003). 

[43] Hecht, E., There Is No Really Good Definition of Mass, 

Phys. Teach. 44, 40-45 (2006). 

[44] Hecht, E., Energy and Change, Phys. Teach. 45, 88-92 

(2007).  

[45] Güémez, J., Termodinámica Relativista: Una 

aproximación didáctica al Primer Principio, Lat. Am. J. 

Phys. Educ. 5, 72-91 (2011). 

[46] Green, D., The strange world of classical physics, 

Phys. Teach. 48, 101-105 (2010). 

[47] Brehme, R. W., The Advantage of Teaching Relativity 

with Four-Vectors, Am. J. Phys. 36, 896-901 (1968). 

[48] Gabovich, A. M., Gabovich, N. A., How to explain the 

non-zero mass of electromagnetic radiation consisting of 

zero-mass photons, Eur. J. Phys. 28, 649-655 (2007). 

 

 


