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Abstract 
Standard physics textbooks do not provide a quantitative account of Newtonian two-body gravitational interactions 

involving explicit non-constant acceleration. This is a gap in contemporary undergraduate textbooks which should be 

addressed. An accessible treatment is presented in this article. 
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Resumen 
Los libros de texto estándar de física no proporcionan un análisis cuantitativo explícito sobre interacciones 

gravitacionales Newtonianas de dos cuerpos sin aceleración constante. Hay una laguna en los libros de texto 

contemporáneos de pregrado, que deben abordarse. En este artículo se presenta un tratamiento accesible. 
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I. INTRODUCTION 
 

The study of gravitational phenomena is essential to 

gaining a basic understanding of real world physics. The 

usual approach to Newtonian two-body gravitational 

interactions in undergraduate studies is to give an account 

involving constant acceleration (such as a small object 

falling near the Earth’s surface) and does not require 

explicit use of non-constant acceleration terms (such as a 

planet orbiting the Sun obeying Kepler’s three laws). 

Despite the fact that circumstances involving non-constant 

acceleration are far more realistic, standard physics 

textbooks do not provide treatments involving explicit non-

constant acceleration calculations (typical examples 

include: [1, 2, 3, 4, 5, 6, 7, 8]). Problems with non-constant 

gravitational acceleration are rarely set in the textbooks 

(and generally quite old ones) but without providing 

worked solutions (see, for example: [9, 10, 11]). 

 The reason for the common absence of these treatments 

and problems seems to be a view that the mathematics is 

above a level that is suitable for use in undergraduate 

courses. Whilst this is the case for first year studies in 

physics, non-constant gravitational acceleration problems 

use standard methods for solving ordinary differential 

equations and is, therefore, suitable for later year studies. 

The lack of quantitative accounts of Newtonian 

gravitational interactions with explicit non-constant 

acceleration constitutes a gap in general undergraduate 

physics textbooks. This article provides an accessible 

treatment which, hopefully, will serve to rectify this 

deficiency in these texts. 

 

 

II. TWO REPRESENTATIVE SCENARIOS 
 

Detailed solutions to two representative scenarios with 

explicit non-constant gravitational acceleration are 

presented below. These solutions are designed to help fill 

the existing hole in undergraduate textbooks and also show 

that the level of mathematics is suitable for advanced 

undergraduate studies. 

In both scenarios, the bodies involved are two spheres. 

The first scenario is where the spheres are of unequal 

masses. One sphere is fixed and the other accelerates until it 

makes contact with the fixed sphere and stops. The second 

scenario is where the spheres are of equal mass. Each 

sphere accelerates towards the other until they make contact 

and all motion ceases. The time taken to impact and the 

kinetic energies involved in both scenarios are calculated. 

Some interesting conclusions can be seen from applying 

these calculations in numerical examples. As an example of 

the first scenario, if the fixed sphere is chosen to be the 

Earth and the other sphere to be a small body at an altitude 

of 1000 kilometers, then the time taken to impact is found 

(from Eq. (8)) to be about 9 minutes. This time until impact 

is slightly longer than that which would be found if the 
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gravitational acceleration used was a constant value 

averaged from the Earth’s surface to the chosen altitude. 

 As an example of the second scenario, suppose each 

sphere is one metre in radius with a mass of 1000kg, and 

that their centres are initially 200 meters apart. Then the 

time taken to meet is found (from Eq. (14)) to be about 100 

days. This time interval is quite realistic due to the 

minuscule magnitude of the mutual gravitational attraction. 

The time interval is, however, at least an order of 

magnitude greater than that suggested by some textbooks 

for this kind of situation [12]. The scenario also provides a 

good illustration that gravitational potential energy belongs 

to the system and not individual objects as it is the sum of 

the final kinetic energies of both spheres that is found to be 

equal to the magnitude of the change in the gravitational 
potential energy of the system consisting of both spheres. 

 

 

III. ONE BODY STATIONARY 

 
Assume two solid spherical bodies of uniform densities 

(denoted A and B) which have radii RA, RB and masses mA 

and mB respectively. The spheres have no angular 

momentum and gravity is the only force acting. If mA is 

many orders of magnitude greater than mB then we may 

assume sphere A to be stationary. Let the motion of sphere 

B be with respect to an external inertial frame of reference 

S in which sphere A is at rest with its centre fixing the 

origin of the x-axis of a Cartesian coordinate system, as 

depicted in Fig. 1. 

 

 

 
 

FIGURE 1. Small sphere accelerating towards a massive sphere. 

 

 

Initially, let the distance between the centres of the spheres 

be D with sphere B also at rest in frame S. At time t > 0, 

sphere B will be moving with non-constant acceleration of 

magnitude a in the negative x-direction (i.e. towards sphere 

A) until such time as the surfaces of the two spheres make 

contact. The acceleration of sphere B during this interval 

will be: 

 

a = (d
2
x/dt

2
) = – (GmA / x

2
) = – (k

2
/x

2
),              (1) 

 

where k
2
 = GmA and x > (RA + RB). Now let v be the 

velocity of sphere B, then we have: 

(d
2
x/dt

2
) = (dv/dt) = (dv/dx) (dx/dt) = (dv/dx) v.      (2) 

 

Combining Eqs. (1) and (2) gives: 

v (dv/dx) = – (k
2
/x

2
).                           (3) 

 

Since Eq. (3) is separable, we find: 

 

 v dv = – k
2
  x-2

 dx. 

 

Integrating produces the result: 

½v
2
 = (k

2
/x) + C1, where C1 is a constant of integration. 

At t = 0, v = 0 and x = D C1 = – (k
2
/D). Therefore 

 

½v
2
 = (k

2
/x) – (k

2
/D).                       (4) 

 

Solving for v, it can be seen that: 

 

v = (dx/dt) = 

 [2k
2
 {(1/x) – (1/D)}] ½ =  2 k {(D – x)/xD}½.

 

 

Since sphere B is moving in the negative x-direction, 

choose the minus sign. Then we have: 

 

(2/D)½ k  dt = –  [x½/(D – x)½] dx.               (5) 

 

Using standard integration tables [13] and Eq. (5), we get: 

 

(2/D)½ kt + C2 

= x½ (D – x)½ – D arctan [x½/ (D – x)½],          (6) 

 

where C2 = constant. When t = 0, x = D C2 = – (½D). 

Then rewriting Eq. (6) gives: 

 

t = (D/2GmA)½ {x½ (D – x)½ 

 – D arctan [x½/(D – x)½] + (½D)}.             (7) 

 

Eq. (7) cannot be re-arranged to express x only as a 

function of t. However, it is clear that the path of sphere B 

will be along an (imagined) straight line joining the centres 

of the spheres. 

The equation for the time taken for the surface of sphere 

B to impact against the surface of sphere A, i.e. at x = (RA + 

RB), may be accurately approximated as follows. If RA >> 

RB, x  RA and (D – x)  (D – RA). Then we have from Eq. 

(7): 

 

t  (D/2GmA)½ {[ RA (D – RA)]½ 

–D arctan [RA
½/(D – RA)½] + (½D)}.            (8) 

 

Eq. (4) also readily allows for the calculation of the kinetic 

energy of sphere B (KB): 

 

KB = ½ mB v
2
 = (k

2
 mB/x) – (k

2
 mB/D) 

= GmA mB {(1/x) – (1/D)}. 

 

When sphere B impacts with sphere A, x = (RA + RB) and 

its final kinetic energy (KB
f
) will be: 
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KB
f
 = GmAmB{ [1/(RA + RB)] – (1/D) } 

= GmAmB {[D – (RA+RB)]/D (RA+RB)}. 

 

Since it was assumed that sphere A is at rest, KB
f
 is equal to 

the magnitude of the change in the gravitational potential 

energy of the system (consisting of both spheres and their 

gravitational fields) when sphere B has moved from x = D 

to x = (RA + RB). 

 

 

IV. BOTH BODIES IN MOTION 

 

Again assume two spheres (A and B) in the inertial frame 

of reference S, initially at rest, separated by a centre-to-

centre distance D, and with the initial position of sphere A’s 

centre fixing the origin. In order to simplify this problem, 

the spheres are assumed to have equal radii (R) and equal 

masses (m). The spheres are only acted upon by their 

mutual gravitational attraction and consequently after time t 

= 0, neither sphere will be stationary in the inertial frame S. 

At time t > 0, the spheres will be moving with equal, non-

constant acceleration of magnitude a towards each other 

until their surfaces make contact and motion ceases. The 

point of contact will be x = (D/2), which is the centre-of-

mass point for the system. Although meeting at the centre-

of-mass is a feature for bodies with unequal masses as well, 

it can be seen to directly follow in this case from both 

spheres being the same mass, starting from rest and having 

the same value of acceleration at a given time. 
Let the distance travelled by each sphere at any 

particular time be s, as shown in Fig. 2. 

 

 
 

FIGURE 2. Two spheres of equal size and mass accelerating towards each other at time t > 0. 

 

 

Then at time t, the distance between the centres of the 

spheres will be (D – 2s). Applying this to sphere A gives: 

 

a = (dv/dt) = Gm / (D–2x)
2
 = κ

2
/(D – 2x)

2
 ,         (9) 

 

where 0  x < (½D – R) is the displacement of A at time t 

and κ
2
 = Gm. Following the same procedure as used in 

Section III, we get from Eq. (9): 

 

 v dv = κ
2
  dx/(D–2x)

2
. 

 

Integrating gives: 

 

½v
2
 = [κ

2
/2(D–2x)] + C3, 

 

where C3 = constant. For sphere A, when t = 0, v = 0 and x 

= 0 C3 = – (κ
 2
/2D). Therefore: 

 

½v
2
 = [κ

2
/2(D–2x)] – (κ

 2
/2D).                 (10) 

 

Solving for v, it can be seen that: 

 

v = (dx/dt) =  {[κ
2
/(D–2x)]–(κ

2
/D)}½ 

=  (2/D)½ κ {x/(D–2x)}½,                     (11) 

 

Choose the positive square root in Eq. (11) as sphere A is 

moving in the + x-direction. Then we get: 

 

(2/D)½ κ  dt =  [(D–2x)½/x½] dx. 

 

Integrating we find: 

 

(2/D)½ κ t + C4 = 

x½(D–2x)½ + (D/2) arctan [2 x½/(D–2x)½],     (12) 

 

where C4 = constant. When t = 0, x = 0 C4 = 0. 

Therefore, from Eq. (12): 

 

t = (D/2Gm)½ {x½ (D–2x)½ 

+ (D/2) arctan [2 x½/(D–2x)½]}.             (13) 

 

Eq. (13) also cannot be re-arranged to express x only as a 

function of t but it is apparent that both spheres will follow 

an (imagined) straight line joining their centres. 

The final position of sphere A’s centre will be at x = 

(½D–R) so that (D–2x) = 2R. Using Eq. (13), the value of 

time t when this final position is reached will be: 

 

t = (D/2Gm)½ {(RD–2R
2
)½ + 

(D/2) arctan ([(D–2R)/2R]½)}. 

If D >> R, the time taken for the spheres to meet will be 

approximately given by: 

 

t  (D/2Gm)½{(RD)½ + (D/2) arctan[(D/2R)½}.    (14) 

 



Peter J. Riggs 

Lat. Am. J. Phys. Educ. Vol. 5, No. 3, Sept. 2011 547 http://www.lajpe.org 

 

Eq. (10) allows the kinetic energy of sphere A (KA) to be 

easily calculated (which is, of course, also equal to the 

kinetic energy of sphere B): 

 

KA = ½ m v
2
 = [κ

2
 m/2(D–2x)]–(κ

2
m/2D) 

= ½ Gm
2
 {[(1/(D–2x)]–(1/D)}. 

 

When the surfaces of the two spheres make contact, x = 

(½D–R) for sphere A. Then the final kinetic energy of 

sphere A (KA
f
) will be: 

 

KA
f
 = ½ Gm

2
 {(1/2R)–(1/D)} = ¼ Gm

2
 {(D–2R)/RD} = KB

f
 

 

where KB
f
 is the final kinetic energy of sphere B. Since both 

spheres move in this case, it is the sum of their final kinetic 

energies that will be equal to the magnitude of the change in 

the gravitational potential energy of the system (consisting 

of both spheres and their gravitational fields) (U), i.e. 

 

U = ½ Gm
2
 {(D–2R)/RD} = KA

f 
+ KB

f
. 

 

This is a good illustration that gravitational potential energy 

belongs to the system, not the individual objects. 

 

 

V. CONCLUSIONS 
 

This article provides an accessible treatment which is aimed 

at rectifying the absence in standard physics textbooks of 

treatments involving explicit non-constant Newtonian 

gravitational acceleration. The two scenarios presented 

show that this is an appropriate topic for later year 

undergraduate studies. Only accounts with non-constant 

acceleration give correct times for the motion of bodies 

acting under their mutual gravitational attraction. 
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