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Abstract 
This paper presents an optimization technique for solving linear system problems with more number of equations than 

unknown variables using Euclidean Space theory and least squares method. In view to automating the technique, we 

developed software in FORTRAN code for a generalized case. The technique was applied to determine the position of a 

Global Positioning System (GPS) receiver on the earth surface for arbitrarily positioned twelve GPS satellites. The 

technique is numerically friendly, and can be conveniently used to simulate problems involving linear systems. 

 

Keywords: Euclidean norm, pseudo-inverse, Gaussian elimination, Global Positioning System (GPS). 

 

Resumen 
Este trabajo presenta una técnica de optimización para resolver problemas de sistemas lineales con mayor número de 

ecuaciones que variables desconocidas usando la teoría del Espacio Euclidiano y método de mínimos cuadrados. En 

vista de la automatización de la técnica, hemos desarrollado software en código FORTRAN para un caso generalizado. 

La técnica fue aplicada para determinar la posición de un Sistema de Posicionamiento Global (GPS) receptor en la 

superficie de la tierra arbitrariamente posicionando doce satélites GPS. La técnica es numéricamente fácil, y puede ser 

convenientemente utilizado para simular problemas que afectan a los sistemas lineales. 

 

Palabras clave: Norma euclidiana, pseudo-inversa, eliminación de Gauss, Sistema de Posicionamiento Global (GPS). 
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I. INTRODUCTION 
 

Solving linear system problems with more number of 

equations than unknown variables could be challenging and 

laborious. One of such problems in practice is the 

simultaneous observation of more than four satellites by a 

GPS receiver [1, 2, 3]. In this paper, we set it as our 

objective to develop an optimization technique for tackling 

such problems. 

The technique involves several mathematical apparatus 

that are interlinked. Euclidean Space theory and least 

squares method are used to transform the matrix defined by 

the coefficients of the unknown variables to obtain an 

invertible symmetric square matrix, g. The matrix is then 

augmented with the determined vector p, and solved by 

Gaussian elimination method to obtain the final solution for 

the unknown variables.  

In view to automating the technique, we developed 

software in FORTRAN code for a generalized case (see 

appendix A). We apply the technique to determine the 

position of a GPS receiver on the earth surface for 

arbitrarily positioned twelve GPS satellites on a 

constellation [1, 4, 5]. 

The mathematical theories and derivations are presented 

in Section 2. Section 3 discusses the numerical algorithm; 

application of the technique is presented in Section 4. 

Section 5 gives insight discussion into the results obtained 

from the application, and conclusion is drawn in Section 6.  

 

 

II. THEORY AND DERIVATIONS 
 

An over-determined linear equation is defined in matrix 

notation as, 

 

,                                      (1) 

 

where A is m x n matrix (m>n),  is an unknown n-

dimensional parameter vector, and b is a known measured 

vector. Our interest is to find the solution of Eq. (1). A 

bx ˆA

x̂
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being a non-square matrix makes direct exact solution of 

Eq. (1) impossible. Under this condition, the number of 

equations (m) is more than the number of variables (n). To 

determine unique solutions for such equations, an 

optimization technique is used. To this end, we define a 

residual r, of Eq. (1) as; bxr  A .  

The Euclidean norm squared of the residual is 

minimized to attain an optimization procedure. The 

Euclidean norm squared of the residual is defined as, 

 

  
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
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iiA bxr   1,2,3,.... ,i m            (2) 

 

where [Ax]i represents the i-th component of vector Ax. We 

can simplify Eq. (2) further by adopting the principle of 

least squares. In n-dimensional Euclidean Space, the 

squared norm of a is a
T
a, [6], where a

T
 is the transpose of a. 

 

aaT )(
2

aa,a .                          (3) 

 

Eq. (2) can therefore be re-written in form of Eq. (3) as, 

 

,  (4a) 

 

but, , therefore, 

 

( ) ( ) ( ) ( ) 2( ) .T T T TA A A A A    x b x b x x x b b b
      

(4b) 

 

The minimum value for the Euclidean norm squared of the 

residual can then be determined when its derivative with 

respect to x assumes value zero, that is, 

 

. (5a) 

 

From Eq. (5a), the minimizing vector  is the solution of 

the normal equation. Thus, 

 

bx
TT AAA ˆ .                               (5b) 

 

Vector  can be easily solved by multiplying (A
T
A)

-1
 by 

A
T
b. The product (A

T
A) results to an invertible symmetric 

square matrix unlike matrix-A. 

 

bx TT AAA 1)(ˆ  ,                               (6) 

 

where (A
T
A)

-1
A

T
 is the pseudo-inverse of matrix-A [6]. 

 

 

III. NUMERICAL ALGORITHM 
 

Numerically, the procedure involved in solving Eq. (6) is 

cumbersome. For numerical applications, a more direct 

approach to solve this equation is the Gaussian elimination 

method. Before application, we define the product (A
T
A), 

which is a square matrix as g and that of A
T
b, which is a 

vector as p. Thus, 
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Matrix- g is then augmented with vector p to obtain a new 

matrix gg ~  p. We define the entries of p as ijg ; 

1, 2,......j n . 

Therefore, the augmented matrix is, 
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The Gaussian elimination algorithm operates by reducing 

the order of a linear system from n to 1 which can easily be 

solved so that other variables are thereafter solved by back 

substitution. Defining a linear system of order k as, 

 
)()( kkg px  .                                    (9) 

 

The unknown variables 
121 ,......, kxxx can be eliminated at 

successive stages. We defined the row multiplier as 
)()( k

kk

k

ikik ggm  ; nki ,...1 . This is used to eliminate 

the unknown variable xk from the linear equations, such that 

the new entries after the operations will be, 

 
( 1) ( 1) ( ); 1,....... 1.k k k

ij ij ik kjg g m g j k n      
         

(10) 

 

The earlier rows from 1 to k are left intact, and zeros are 

introduced into the column k below the diagonal element. 

By continuing this process, after n-1 steps, we obtain, 
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Matrix (11) is a matrix of order n, such that, )()( nng px  , 

and can be re-written as, 

 

qx u
,                                      

(12) 

 

where u is the upper triangular matrix and vector q is vector 

p in order n, i.e.  1,  niuuq . Eq. (12) gives the final 

solution of Eq. (1) by back substitution process. Thus, 
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Also, 
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Eqs. (13) and (14) are the required solutions. We developed 

a FORTRAN code to automate the technique. 

 

 

IV. APPLICATION 
 

This technique can be found applicable in any linear system 

problem with more equations than unknown variables. We 

apply it to a system of twelve GPS satellites on a 

constellation. The intention is to determine the position of a 

receiver on the earth surface with these satellites in view 

[7]. The coordinates of the satellites are assumed to be; 

SV1(3,1,2,1;9), SV2(1,2,1.5,1;8), SV3(2,1,2,1;8), 

SV4(3,1,1,1;7), SV5(1,2,2,1;9), SV6(3,2,1,1;10), 

SV7(2,2,3,1;12), SV8(1,1,3,1;8), SV9(1,3,3,1;13) 

SV10(2,2,2,1;10), SV11(3,1,2,1;10) and SV12(2,2,1,1;8). The 

first three entries for each satellite are the satellite position 

term in Cartesian coordinate. The fourth entry is the 

receiver clock bias and the last entry represents difference 

between measured and determined pseudoranges. These 

sets of coordinates are used as the input data for the 

software code.  
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The variables x : x1, x2, x3 are the GPS user position 

coordinates and x : x4 is the clock bias error [4]. Eq. (15) is 

obviously over-determined. The code transforms Eq. (15) to 

a square matrix, 
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The Gaussian elimination procedure of the code then 

modifies Eq. (16) to an upper triangular matrix,  
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Matrix (17) yields, 
1, 1.48215,x   

2 2.39867,x 

3 1.90319,x   
4 1.35582x   (see appendix B). This output 

is discussed in Section 5.  

 

 

V. DISCUSSION 
 

This technique proffers direct and numerically stable 

procedure for solving linear systems with limited unknown 

variables. In this section, we first of all discussed the case 

of GPS satellites that are located on an orbital plane and the 

position of a user on any part of the earth surface is to be 

determined with these satellites in view [7]. In practice, 

four satellites are usually positioned on each of the six 

orbital planes to form a GPS constellation of twenty-four 

satellites [1, 4, 5]. In real sense, a receiver is designed to 

observe more than four satellites simultaneously, leading to 

superfluous linear systems. The technique presented herein 

tackles such problems. 

All the satellites coordinate entries here are arbitrarily 

chosen. Under practical application, they must be initially 
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determined before applying this technique. Each element is 

defined as, 

 

i

k

i

k

ij

xx
a



)0(

)( 
 ,                              (18) 

 

where 
)(i

kx  represents the k-th position variable for the i-th 

satellite and 
i  is the pseudo-range for the i-th satellite. 

Each of the last column entries is taken as unity because 

they are receiver dependent and therefore the same for all 

satellites signals and pseudoranges [1, 2].  

After evaluation of Eq. (17), the first three variables (

321 ,,: xxxx ) are the GPS user position coordinates in 

metres and x : x4 is the user bias clock error in dimension of 

distance. To transform this quantity to dimension of time 

(seconds), there is need to divide it with the speed of light. 

To appreciate the final result, the user position in Cartesian 

coordinate system must be converted to the flat earth 

coordinate system in terms of earth’s latitude, longitude and 

altitude (see [4, 5] for details). 

 

 

VI. CONCLUSION 
 

An optimization technique for evaluating linear systems 

with more number of equations than unknown variables has 

been developed. The technique is numerically friendly and 

simple to apply. As part of our efforts to enhance its 

lucidity, we apply it to determine the position of a GPS user 

on the earth surface for arbitrarily positioned twelve GPS 

satellites. The technique was validated by self-consistency 

method. 

However, we admit that ill-conditioning of the (A
T
A) 

product of the pseudo-inverse may constitute threat to the 

accuracy of the technique. Also, the starting point involves 

minimizing the norm of measured quantity error, Ax-b as 

opposed to that of the small error in the unknown 

parameter, x which could have actually been needed for 

better accuracy. These challenges would be taken into 

consideration in future studies. 
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Appendix A: Code 

 

       Program optz 

C     Program to solve over-determined linear systems 

      Parameter (m=m,n=n) 

      Dimension a(m,n),P(m),c(n,n),D(n),x(n) 

       Open(unit=1,file='optz.out',status='new') 

       Write(*,*)'Enter the coefficient of variables' 

       Read(*,*)((a(i,j),j=1,n),i=1,m) 

       Write(*,*)'Enter the values of p' 

       Read(*,*)(p(i),i=1,m) 

C      Determining the product of transpose of matrix A and 

A 

            Write(1,*) 

            do 39 j=1,n 

            do 35 i=1,n 

            C(i,j)=0.0 

  35          continue 

              do 40 i=1,n 

             do 36 k=1,m 

            C(i,j)=c(i,j)+(a(k,j)*a(k,i)) 

  36          continue 

  40           continue 

  39          continue 

  43          Format(2x,5F7.2) 

C      

************************************************

********** 

C       Determining the product of A transpose and p 

               Do 46 i=1,n 

              D(i)=0.0 

  46            continue 

              Do 47 i=1,n 

              Do 49 j=1,m 

              D(i)=D(i)+a(j,i)*p(j) 

  49            continue 

  47            continue 

C       

************************************************

******** 

C       Determining the augmented matrix 

        Do 52 j=1,m 

         c(i,m)=D(i) 

  52       continue 

        Write(1,*) 

        Write(1,*)'The initial Augmented matrix g' 
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         Do 53 i=1,n 

        Write(1,43)(c(i,j),j=1,m) 

  53       Continue 

C       Solving the augmented matrix with Gaussian 

Elimination 

          Do 54 j=1,n-1 

          Do 54 i=j+1,n 

          T=c(i,j)/c(j,j) 

          Do 54 k=1,n+1 

           c(i,k)=c(i,k)-c(j,k)*T 

  54         continue 

        Write(1,*) 

        Write(1,*)'The final Augmented matrix g' 

         Do 56 i=1,n 

        Write(1,43)(c(i,k),k=1,n+1) 

  56       Continue 

  55        Format(2x,5F10.5) 

           x(4)=c(4,5)/c(4,4) 

C       **********Starting the back substitution 

procedure*******             

           Do 58 i=n-1,1,-1 

           sum=0.0 

           Do 57 j=i+1,n 

           x(n)=c(n,n+1)/c(n,n) 

           Sum=sum+c(i,j)*x(j) 

            x(i)=(c(i,n+1)-sum)/c(i,i) 

  57       Continue 

  58       Continue 

          Write(1,*) 

           Write(1,59)(i,x(i),i=1,n-1) 

  59     Format(2x,'x(',i2,')=',F8.5) 

           Write(1,60)x(n) 

  60     Format(2x,'x(n)=',F8.5) 

            stop 

            end 

 

Appendix B: Sample Output 

 

 The initial Augmented matrix g 

    56.00  37.00  43.50  24.00 222.00 

    37.00  38.00  40.00  20.00 195.00 

    43.50  40.00  52.25  23.50 228.00 

    24.00  20.00  23.50  12.00 112.00 

  

 The final Augmented matrix g 

    56.00  37.00  43.50  24.00 222.00 

      .00  13.55  11.26   4.14  48.32 

      .00    .00   9.11   1.42  15.41 

      .00    .00    .00    .23   -.31 

  

  x( 1)=  1.48215 

  x( 2)=  2.39867 

  x( 3)=  1.90319 

  x( 4)= -1.35582 

 


