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Abstract 
The Density Matrix Renormalization Group (DMRG) method is applied to a simple Heisenberg model to compute its 

low--lying eigensystem. The computational aspects of the procedure are given in details, where some system 

symmetries are considered. This permits us to reduce the computational effort provided in diagonalizing matrices. It 

shows also the relevance of symmetry concept in dealing with quantum systems. 
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Resumen 
El Grupo de Renormalización de la Matriz de Grupo (DMRG) es un método que se aplica a un simple modelo de 

Heisenberg para calcular its low--lying eigensystem. Los aspectos computacionales del procedimiento se dan en 

detalles, donde algunas simetrías de sistemas son consideradas. Esto nos permite reducir el esfuerzo computacional 

proporcionado en la diagonalización de matrices. Esto muestra también la relevancia del concepto de simetría en el 

trato con los sistemas cuánticos. 
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I. INTRODUCTION  
 

The present paper is to give a detailed example of the 

application of a numerical method (the Density Matrix 

renormalization Group, DMRG) to compute low lying 

eigenstates of a quantum system (the one dimensional 

Heisenberg model). 

Before that, the reader needs to be informed about the 

essential features of the applied numerical method as well 

as the quantum system to be used. In fact, historically, the 

DMRG procedure, developed by S. R. White in 1992 [1] 

(see also: [2], [3] and [4]), has appeared as a remedy to the 

Wilson's renormalization approach failure [5] to reproduce 

accurate results for many strongly correlated systems. In 

fact, the criterion of keeping eigenstates with lowest 

energies introduced by Wilson was behind this failure. In 

order to fix the situation, S. White has considered that a 

system (block) must be connected to an other block 

(environment) to form a superblock, and therefore each part 

contributes to the ground state of the superblock through its 

own states. As a part of solution, he introduced a new 

criterion for selecting the eigenstates to be kept in the 

renormalization procedure; it consists in keeping the states 

of a system that contribute the more in the ground state of 

the whole system. To do this, he had recourse to statistical 

mechanics and especially to the concept of density matrix, 

which tells us how much a part of a system is "involved" in 

the ground state of a bigger system and which states 

contribute the more. 

Technically, the basic idea of DMRG algorithm consists 

in increasing the size of the system by adding two sites at a 

time while the corresponding Hilbert space is kept constant. 

In the warm--up phase, the Hamiltonian operator and 

connection operators of each block in the system are 

renormalized and then stored to be used later. This is 

followed by a sweeping procedure which iterates the 

process on the full system until convergence is reached. 

The development of the DMRG method has opened a 

possibility to a variety of quantum systems (Spin systems, 

Hubbard model, Kondo insulator, etc.) to be solved 

numerically with extremely high accuracy, with system size 

much larger than those solved by exact diagonalization.  

In the other hand, the interest in one-dimensional spin-S 

Heisenberg Hamiltonians is renewed in recent years by 

theoretical and experimental motivations. Thus, in the 

seventies, several families of magnetic compounds with 

linear chain structures were discovered and their properties 

were analyzed from models developped earlier [6]. In fact, 

wide number of molecular clusters containing relatively a 

small number of magnetic ions can be synthesized ([7], 

[8]), and the essential of their low energy magnetic 
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properties is captured by such a model. In other hand, there 

are several material systems (e.g 
2 5Y BaNiO ) which are well 

represented by the one-dimensional Heisenberg model [9]. 

Also, spin ladders systems containing 
3CuCl  and 

3CuBr  

were found to be ideal models of a ferromagnetic and 

antiferromagnetic alternating Heisenberg chains with 1

2
S 

[10]. The advent of high temperature superconductors has 

also triggered the interest ([11], [12]).  

In the present paper we will use the fact that the ground 

state eigenfunction belongs to the subspace corresponding 

to 0
z

TS  , 
z

TS  being the total z-component spin of the 

system. This will reduce considerably the computational 

effort in diagonalizing matrices but demands, in other hand, 

more dexterity in dealing with a such case. 

 

 

II. GROUND STATE EIGENFUNCTION 
 

One can write the ground state of the the superblock 

(system+environment), as it is shown in Fig. 1, in a basis 

that is a tensor product of the basis vectors of the system 

(one of the enlarged blocks) and the environment (the other 

enlarged block) 

 

0

1 1

.
l rm D m D

l r

ij i e j e

i j

a b b
 

 

    
                (1)

 

 

Where 
l

i eb   and 
r

j eb   are the basis for left (system) and 

right (environment) enlarged blocks in Hilbert space of 

dimensions lm D  and rm D , respectively. Each enlarged 

block basis is a tensor product of the block ,l rm 

dimensional basis and the Ddimensional basis of the 

added site. 

Thus 

  .

l l

i p q

r r

k t s

b b de

b d be

  





  
 

 

Where 
l

ib   and 
r

kb   are the bases of the left and right 

blocks, respectively, while id   represent the basis of a 

single site within a D--dimensional space. In the case of the 

Heisenberg model, there are two basis vectors on each site: 

1  d    , and 
2d    , so that D is equal to 2. Note that in 

further steps, ,l rm   will represent the number of states 

kept for each block. The left and right blocks are enlarged 

by a site at a time. We assume that the right block can be 

obtained from left block through reflection symmetry, 

which is not the case when we deal, for example, with a 

disordered system; where reflection symmetry is broken. It 

is necessary to number the enlarged block states as follows 

(this is not the only way): ( 1)k i D j   . 

The density matrix   is given by 

 

*

1

.
rD m

ijii i j
j

a a  





                                   (2) 

 

After the density matrix   is built and diagonalized, lm

eigenvectors corresponding to the highest eigenvalues of 

the latter are chosen to build truncature operator O, needed 

to renormalize the operators of enlarged blocks (i.e. keep 

the dimension of the Hilbert space constant while the 

number of sites is increasing). This is the very basic idea of 

renormalization algorithm. The operator O is a ( )l lm m D   

matrix, whose rows are the lm  eigenvectors corresponding 

to the highest eigenvalues of  . Open boundary conditions 

are applied to the superblock.  

In order to estimate the accuracy of the truncation 

procedure, it is useful to compute the following quantity 

 

1

1
m

P 





   ,                                   (3) 

 

where   are the m eigenvalues of the density matrix (

lm m  for left block ) whose eigenvectors are to be kept to 

form the "truncation" operators. 

 

 

 

 
 

FIGURE 1. The superblock configuration: two blocks and two 

sites to add at each step of the DMRG procedure. 

 

 

III. PROCEDURE 
 

In this section we present a detailed example of the 

application of the DMRG method to Heisenberg model. In 

fact, the Hamiltonian of a one-dimensional isotropic 

Heisenberg spin-- 1

2

 chain with N spin is 

 

1 1 1 1

1
[ ( ) ]
2

N N
z z

i i i i i i i i
i i

H J S S J S S S S S S
   

        ,(4) 

 

where ( , , )x y z

i i i iS S S S  is the quantum mechanical 

operator spin at site i with 
x y

i i iS S iS   . J is taken to be 

unity and only interactions between nearest neighbors sites 

are to be considered. In matrix form, spin matrices at single 

sites are given by 

   system environment 
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10 1 0 0 1 0
, , .

0 0 1 0 0 12

z
S S S
 
  



     
     
     

        (5) 

 

The left enlarged block of a heisenberg chain writes, in the 

basis | ,| ,|    and | , as  

 

(1)

1 0 0 0

1 0 1 2 0
(4, 2) .

0 2 1 04

0 0 0 1

lH





 
 
 
  
 

                        (6) 

 

Note that digit 4 in Hamiltonian above stands for number of 

basis vectors, digit 2 is the number of effective sites the 

Hamiltonian matrix is representing, while the superscript 1 

terms the first renormalization step. The right enlarged one 

has a similar matrix. We need also to construct 

rightmost/leftmost sites spin matrices, that are used to 

connect each block to the added site, , , , , z

r r l l lS S S S S   
 

and 
z

rS , to be renormalized. For example, rS


, 
z

lS  are the 

right most spin S


, and the left most spin 
z

S , 

respectively. They write as 

 

2

0 1 0 0

1 0 0 1 0 0 0 0

0 1 0 0 0 0 0 1

0 0 0 0

rS I S
 
    

 
    
    

      
 

 

 

2

1 0 0 0

1 1 0 1 0 0 1 0 0
,

0 1 0 1 0 0 1 02

0 0 0 1

z z

lS S I    
 



 
    
    

      
 

 

 

where 2I  is a unit matrix of order 2. Thus, the superblock 

Hamiltonian writes  

 

(1) (1)

2 2 .
1

(
2

 )
z z

sup l r r l r l r lH H I I H S S S S S S
   

         

(7) 

 

 

There are 16 basis vectors for the superblock Hamiltonian, 

but there are, in fact, only 6 basis vectors that span the 

subspace 0Sz  . These basis vectors are 

 

|

|

|

|

|

|

 
 
 

 
 
 

 
 
  

. 

 

 

TABLE I. Eigenvalues, eigenvectors and corresponding total  Sz  

of de density matrix for the left enlarged block, 

 

N eigenvector eigenvalue  Sz  state 

1 (1, 0, 0, 0) 2
2.232909936926020 10


  1 | 1 |   

2 
1 1

(0, , , 0)
2 2

  0.933012701892219 0 
1

| 2 (| | )
2

     

3 
1 1

(0, , , 0)
2 2

   2
2.232909936926041 10


  0 

1
| 3 (| | )

2
     

4 (0, 0, 0, 1) 2
2.232909936926016 10


  -1 | 4 |   

 

 

and the corresponding Hamiltonian block, in this bsis, is 

 

0
.

1 0 2 0 0 0

0 1 2 2 0 0

2 2 3 0 2 01

0 2 0 3 2 24

0 0 2 2 1 0

0 0 0 2 0 1

Sz

supH 

 
 

 
 

  
 

 
  
 

              (8) 

 

The diagonalization of the above matrix gives, among 

others, the ground state eigenfunction; which enables us to 

build the density matrix  . Note that the Hamiltonian 

(1) (4,2)lH  and the density matrix   have the same block--

diagonal structure, i.e. they have the same eigenvectors 

with different eigenvalues. 

One picks up two eigenvectors, corresponding to the 

highest eigenvalues of the density matrix, to build the 

truncature operators, such that 

 

.

1 1

2 2

1 1

2 2

0 0

0 0

O

 
 

 
 

  
 

                         (9) 

 

Thus, the renormalized Hamiltonian of the left block is 

given by 
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(1)' (1) †
3 01

(2,2) (4,2)
0 14

l lH OH O
 

   
 

.            (10) 

 

This 2x2 matrix represents the Hamiltonian of a block of 2 

sites with just two basis vectors (it depends on the number 

of the states kept; in our case 2 states): | 2  and | 3 , both 

representing a basis vector of total Sz  equal to zero; as 

cited in Table I. All other operators are also renormalized. 

For example:  

 

†' ' † 10 0 0 1
(2, 2) ; (2, 2)

0 0 1 02

z z

r r r rS OS O S OS O


    
   
   
   

.(11) 

 

The superblock Hamiltonian is then constructed in the new 

basis. The Fig. 2 displays the effective superblock. 

 

 

 

 

 

 

 

 

 
FIGURE 2. Basis vectors for both right and left blocks and the 

two added sites. 

 

 

Number 0 stands for total Sz  of each state with a subscript 

referring to the number of state in Table I, whereas + and - 

stand for spin up and spin down, respectively. There are 

effectively 16 basis vectors 
 

3

3 3

3

2 2

2

2
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0 0

0 0

0 0
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0

 

 

 

 

 

 

 

 

 

0 

 

 

 

 



 
 
 
 
 
 
 
 
  

 


 




. 

 

Among these 16 vectors there are only 8 basis vectors 

which span the subspace 0Sz  . These 8 vectors are 

 

2

3

3

3 2

3 2

3 3

3

2

3

2

2

2

2

 

 

 

 

0 0

0 0

0 0

0 0

0 0

 

 

 

 

 

 

 

 0 0

 0

 

0

0

 

 0

 

 

 

 

 



 
 
 
 
 
 
 
 
 




 
 




   

. 

 

The superblock Hamiltonian is then rewritten in the 

reduced subspace (8 basis vectors) to get the ground state. 

The density matrix is then built again and the truncature 

operators constructed. Now we need to construct the 

operators of the left block and see what are the new basis 

vectors. Thus 

 

' '

' '
.

(2) (1)

2(4, 3) (2, 2) (2, 2)

(2, 2)

1

(2, 2)

(
2

)

l l l d

z

d

z

l r d

H H I S S

S S S S

 

 

   

   

         (12) 

 

This matrix is written in the basis 

2 32 3( 0 , 0 , , 0  0 )     

 

(2) 1 3 0 1 0 0 0 1 0 0 0 1 0
(4, 3) [ ]

0 1 0 1 0 0 0 1 0 0 0 14

1 0 1

1

1 0
,

1 0 0 1

2

4

lH


     

 


           
           
           

   
   
   

   (13) 

 

where the spin operators matrices are the same as in the 

first iteration. This is not true in general, but in our case it is 

for we have decided to keep only two states, which makes 

the spin operator of the rightmost site of the left block 

writes as 

 

1 0 0 1

0 1 0 0
rS     
    
   

.                           (14) 

 

If, for example, we decide to keep three states then, 

 

 

 

1 0 0
0 1

0 1 0
0 0

0 0 1

rS 

 
  

   
  

 

.                       (15) 

 

Let's remind that the density matrix for the left block and 

the left block Hamiltonian share the same structure, so that 

2 2

3 3

0 0

0 0

   

   
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the eigenvectors of the density matrix are a linear 

combination of the 4 basis vectors stated for the left block. 

Again we have to pick up the first two highest 

eigenvalues of the density matrix in order to use their 

corresponding eigenvectors in building the truncature 

operators.  

For this second iteration, we have two same highest 

eigenvalues: Eg=0.499898832190182 with eigenvectors 

(0.9921, 0, -0.1257, 0) and (0, -0.9921, 0, -0.1257), so that 

the truncature operator writes 

 

0.9921 0.000 0.1257 0.000

0.000 0.9921 0.000 0.1257
O

 
  

  

.          (16) 

 

All this means that we have made a basis change to a new 

two--vectors basis 

 

2 3| 1 0.9921 | 0 0.1257 | 0     ,                (17) 

 

and 

 

2 3| 2 0.9921 | 0 0.1257 | 0      .                (18) 

 

For the first state | 1  the total Sz  is equal to 1

2
, while it is 

equal to 1

2
  for the second state | 2 .  

At this stage, the two values of Sz  are passing through 

this basis change, and the figure of the effective superblock 

looks like this 

 

 

 

 

 

 

 

 

 
FIGURE 3. Basis vectors for both right and left blocks and the 

two added sites. 

 

 

The subscripts 1 and 2 refer to the states kept for the 

renormalization, so that 
1| |1     and 

2| | 2    , whereas 

+ and - refer to the total Sz  for each state.  

As the truncature operator is built, all block operators 

are obtained and then the superblock is built in a basis with 

16 vectors 

 

1 1

1 2

1 1

2

1

2

2

2 2

 

  

 

   

 

  
 
 

  
 
 
 
 
  

 


 
   

. 

 

Among these 16 vectors there are only 6 basis vectors 

which span the subspace 0Sz  . These 6 vectors are  

 

1 2

1 2

1 1

2 2

2 1

2 1

  

  

  

   

 

 
 
 

 
 
 
 
 
 
 

 

   

. 

 

All the above steps, called the warm--up phase, are repeated 

until a desired size is reached. All truncature operators are 

stored to be used later. 

Note that the results out of the warm--up phase, also 

named the infinite size method, are not so accurate, and, 

consequently, S. White [1] had suggested a number of 

sweeping cycles to be achieved in order to improve the 

accuracy of results. In fact, once the warm--up phase is 

achieved a sweep cycle begins, when the left and right 

blocks are representing the same number of effective sites. 

Therefore, the left block is enlarged while the right block 

retrieves, until it will contain only one site. Then the 

configuration is reversed: the right block becomes the left 

block while the left block becomes the right one. Thus, the 

renormalization steps restart following the procedure 

explained above. For more accuracy, the eigenvalues and 

eigenvectors are taken when the configuration of the 

superblock is symmetric. Technical aspects of the sweeping 

phase, named also finite size method, are abundantly 

explained in DMRG literature; see for example [1, 2, 3]. 

 

 

IV. CONCLUSIONS 
 

In this paper, we have presented a detailed example of 

DMRG procedure applied to antiferromagnetic Heisenberg 

model. It permits to compute low states energies of a spin-
1

2
 chain. This example could be an introductory application 

of the DMRG method to simple systems. It helps to 

understand more or less the spirit of the method, and then to 

1 1

2 2

     

     
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move to a higher level where the number of states kept is 

very large.  

In other hand, we have shown that if we consider 

system symmetries, this will reduce considerably the 

computational effort, especially if we are interested to just 

ground state and low-lying states properties. Thus, we have 

used the fact that the ground state belongs to the subspace 

of 0
z

TS   to limit the diagonalization to only matrices 

whose total spin-z of the basis vectors is equal to zero. 

Therefore, if we are concerned by the excited states, we 

have to enquire about the subspace those excited states are 

belonging to. 
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