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Abstract 
We introduce and review the entanglement quantum. We will not attempt an in depth look at this approach as it would 

be impossible to treat it in such a short review. The emphasis is on understanding the meaning of the entanglement 

quantum. In this paper we showed the conception of entanglement by an example. Via this example we have clearly 

another conception such as pure state, mixed state and density matrix. Our motivation of this paper is to enable 

beginning students to start exploring the vast literature on this matter. 

 

Keywords: Entanglement quantum – pure state – mixed state – density matrix. 

 

Resumen 
Introducimos y revisamos el entrelazamiento cuántico. No intentaremos mirar a fondo a este planteamiento, ya que 

sería imposible de tratar la información como una breve enseñanza. El énfasis está en entender el significado del 

entrelazamiento cuántico. En este trabajo se presenta la concepción de entrelazamiento como un ejemplo. Por medio de 

este ejemplo tenemos claramente otras concepciones tales como estado de pureza, estado mixto y de la matriz densidad. 

Nuestra motivación de este estudio es permitir a los estudiantes principiantes empezar a explorar la vasta literatura en 

esta materia. 
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I. INTRODUCTION 
 

Entanglement was first used by Einstein, Podolski and 

Rosen (EPR) [1] to illustrate the conceptual differences 

between quantum and classical physics. In their seminal 

paper published in 1935, EPR argued that quantum 

mechanics is not a complete theory of nature, i.e. it does not 

include a full description of the physical reality, by 

presenting an example of an entangled quantum state to 

which it was not possible to ascribe definite element of 

reality. EPR defined an element of reality as a physical 

property, the value of which can be predicted with certainty 

before the actual property measurement. This condition is 

straightforwardly obeyed in the context of classical physics, 

but not in the context of quantum mechanics. The 

predictive Power of quantum mechanics is limited to, given 

a quantum state and an observable, the probabilities of the 

different measurement outcomes. This feature led EPR to 

deem quantum mechanics as incomplete. The 

incompleteness of quantum mechanics, as understood by 

EPR, was to plague physics for decades. 

Entanglement too has proved to be a physical resource 

capable of revolutionizing the theories of computation and 

information. Within quantum information science, the 

logical unit of information is the qubit, a two – level 

quantum system. The qubit differs from the bit in that is can 

be any superposition of 0 and 1. In particular, a set of qubits 

can be in an entangled state. The possibility of exploiting 

these quantum correlations between qubits, for realizing 

computations faster than it would be possible classically, 

was first realized by Deutsch in 1985 [2]. 

 

 

II. CONCEPTION OF ENTANGLEMENT 
 

We explain entanglement by below example. Two brothers 

and sisters named Ario (instead of Bob) and Utab (instead 

of Alis) are outside of earth into a ship. They are going to 

travel to Iran and United State. They know difference of 

time of these two countries is about 12 hours. That means if 

it is day time in Iran, that is night in United State and vice 

versa. We introduce dependent state ket to this system 

 
|ψ> =| Iran day, USA night>   | Iran night, USA day> (1) 
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First Ario wants to go to Iran. It’s probably clear if he faces 

to day time it will be 
 

 
. Ario goes to Iran and gives message 

to Utab |Here is day>. At this moment Utab will get it’s 

night in United state and gives message |Here is night>. We 

call non-local sharing to This correlation. It’s thoroughly 

clear that Ario  

Can’t change night. So, it’s impossible increasing or create 

entanglement [3]. 

Now imagine another situation. Before Ario goes to Iran 

Utab goes to United State. Also he faces to probably of 
 

 
 to 

day time. 

Now Ario is going to Iran, the probably that he face 

today time is equal to zero and face to night time is equal to 

one. So the probably of measurement on United state is 

effected on the probably measurement of Iran. We call 

entangle state to relation (1). 

 

 

III. ENTANGLED STATE BY THE SYMMETRY 

SYMMETRY 
 

The system consist of two qubite. Those which have 

symmetry in arrangement of qubite are certainly entangled 

and those haven’t Symmetry aren’t entangled. 

Consider for example 

 

|ψ> = 
 

  
 (|00> + |01>).                           (2) 

 

We can write 

 

|ψ> = 
 

  
 (|00> + |01>) = |0>   

 

  
 (|0> + |1>).        (3) 

 

Then mixed state |ψ> is written like two separated qubites. 

Therefore |ψ> isn’t intangled. As first qubite is (|0>, |0>) 

and second qubite is (|0>, |1>) because they haven’t 

symmetry aren’t entangled. Pay attention to another 

example 

 

|ψ> = 
 

  
 (|01>  |10>).                           (4) 

 

First qubite is (|0>, |1>) and second one is (|1>, |0>). As 

seen state of (4) is not factorizable so it’s entangled state. 

Conseqently whenever there is a symmetry among two 

qubites, that’s entangled and very intresting matter is that 

without calculating can be reached to this result.   

 

 

IV. PURE STATE AND MIXED STATE: 
 

Whenever we know the physical state of an object, the 

object is said to be in a pure state. Suppose that the electron 

is in a pure state entering the apparatus, i.e. it’s state is 

known to be        

 

ψ=  α+   β.                                   (5) 

Where, for simplicity, we disregard the x, y, z degrees of 

freedom and concentrate on the spin. Then, if the detector 

haz been switched on, but before we look inside the black 

box, the electron exiting the detector must be either in state 

α, with probability       or else in state β, with probability 

   |². 

This is an example of a mixed state or mixture. In 

general, if the state of an object is not know with certainly, 

but it is known that the object is in one of a number of 

possible state, together with probability of being in each 

state, then the object is said to be in a mixed state. 

Ario, who was set up this experiment, has left the lab 

for the day. Utab, knowing Arios forgetful nature, goes to 

check that the detector inside the black box has been 

switched off, thereby is conserving the very expensive 

electronics inside. To her consternation, she discovers that 

the box has already been locked by the janitor, who has the 

only key. Can she tell, without opening the box, whether 

the detector inside the box is on of off? 

It is always possible to distinguish between a pure state 

and a mixture. Suppose Utab measures, on the beam of 

electrons emerging from the box, the value of the 

observable O. If the detector is switched off, then the 

particles emerging from the detector remaining the initial 

state ψ, so that  

 

       = <ψ|O|ψ> =      <α|O|α|> +      <β|O|β> + 

  *  <α|O|β> +   *   <β| O| α>,                (6) 

 

      = Prob. to find spin up × <α |O |α> + Prob. to find 

spin  

down × = <β| O |β> = |     ²<α |O |α> +|   |²<β| O |β>.  (7) 

 

The difference between the pure and mixed state result is 

called 

 

The interference term 

 

      =                    =   
    <α|O|β>+ 

  
    <β|O|α>                                                (8) 

 

 

V. DENSITY MATRIX 
 

In modern quantum mechanics, the density matrix or 

density operator is an essential tool for describing any 

quantum system.  

A density matrix holds almost all the information about 

the observables of a system. 

In the Diract notation for quantom mechanics, it is 

natural to think of ket vectors as position of quantom 

mechanical states in a Hilbert space and that bra vectors are 

a method of defining a basis in which to view the Hilbert 

space of states. When the density operator acts on the state 

vector (ket) of a system it gives us an eigenstate of the 

system. 

In a system with a state vector, we can define the 
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density operatore for the system by the outer product ρ (t) 

=|ψ, t> <ψ, t|. 

With ψ as the time-dependent wave function describing 

the system, we may notice the explicit time dependence of 

the operator. It is clear that any 1system may evolve in 

time, as the density operator contains information about the 

observables of a system it will be of the density operator–

such equations are known as the master Equations of the 

system. 

A density matrix or density operator for the ensemble of 

|ψ> is defined as ρ =    |  >    <  |. Such that  

 

(1) Tr(ρ)=1, for 

 

Tr (ρ) =   <n |ρ| n> =   <n |   {|  >  <  |} |n> =   

  <n |  >   <   | n> =       <      > =       = 1.  (9) 

 

The final equality follows by imposing the normalization 

condition <   |   > = 1 

 

(2) ρ is positive semi-definite for any state |A>, <A |ρ| A> 

=     |<A|   >|² ≥ 0 

 (3) If the ensemble of |  > has only one member, then 

 ρ = |  > <  | 

 

is a pure state, with p being the probabilitistic weight of the 

th state. Noting that the density matrix ρ is Hermitian, it can 

always 

be written as ρ =       |i> <i| 

Where λ are the eigen values of the density matrix and 

the |i> are number states. This describes a coherent 

quantum superposition of pure states. The fact that ρ is 

Hermitian ensures that the eigen values are real and, hence, 

that the above statement is physically meaningful. The 

diagonalized matrix can then be given the standard 

interpretation with each eigen value being associated with 

the probability amplitude of the state with which it is linked 

(note that all the probabilities add up to1 and Tr {ρ} = 1). 

Importantly, when a measurement of a quantum system 

described by a density matrix ρ is performed, the 

expectation value of the observable is <Â> = Tr (Âρ). 

Indeed, as we expect to place a probabilistic physical 

interpretation on the density matrix, the following is also 

true 

 

Tr {ρ²} ≤ 1. 

 

With equality only for a pure state. The expectation value of 

a quantum-mechanical operator is given by probabilistic 

average over the specific likelihood of the allowed states 

(p(a)). Hence, 

 

<Ô> =      <   | (Ô) |   > 

 

Here, we can define the density operator to be ρ =      |   

> <   | Thus Tr (ρ²) =           |<   |   >|² and since 

|<   |   >|² ≤ 1 and       = 1 implying that       |<    | 

  >|² ≤ 1, then Tr (ρ)² ≤       = 1. 

VI. CONTINUE OF DISCUSSION: 
 

Suppose that we have two particles with spin of 
 

 
 and state 

of them  

 

      = a |11> + b |10> + c |01> + d |00>.          (10) 

 

We ask what’s state of A? 

That’s right that both of them are in one specified state, 

but cannot attribute specified state vector to A particle. In 

this case and all similar cases our quantum system is part of 

one bigger system and it’s state is defined by one density 

matrix. Generally assume that one system is consisted on 

two parts A and B. According to principles quantum system 

is attributed to this system Hilbert space H =        . 

 

 

 
 

FIGURE 1. This figure contain of two parts A and B. We ask 

what is state of A?. 

 

 

State of A to be obtain by the trace of general density 

matrix of AB. 

   =     (|ψ> <ψ|). 

 

Come back to our first example: 

Ario and Utab know out of earth if Iran is day it’s night 

in united state and vice versa. 

That means: 

 

|ψ> = 
 

  
 (|Iran day, USA night>    |Iran night, USA day>) 

(11) 

 

We know (11) is a pure state. Indeed they have enough 

information about whole system. But not only they don’t 

know if it’s day in Iran or night and but also for United 

state either. The density matrix of them information is 

 

ρ = (|Iran day, USA night>    |Iran night, USA day>) (<USA 

night, Iran day|    <USA day, Iran night|) = |Iran day, USA 

night> <USA night, Iran day|    |Iran day, USA night> 

<USA day, Iran night|    |Iran night, USA day> <USA night, 

Iran day| + |Iran night, USA day> <USA day, Iran night|.  

(12) 

 

Up to now their information was about whole systems, now 

they want to say their information about part of system. For 

examples about measurement of Iran 
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      = 
 

 
 |Iran day> <Iran day| + 

 

 
 |Iran night> <Iran night|. 

(13) 

 

His (her) information about Iran (part of system) is not 

exact. He (she) knows its probably day time in Iran 50% 

and 50% night there. This is just observer’s information but 

it’s not done any measurement yet. Now, measurement is 

doing  

 

      |Iran day> = 
 

 
 |Iran day>,                       (14) 

 

      |Iran night> = 
 

 
 |Iran night>.                     (15) 

 

Information about whole is more careful from detail. To 

exact information about details, Ario goes to Iran and Utab 

to United state information which are exchanged by them 

will be entangled. 

VII. CONCLUSIONS 
 

In this paper we showed that the conception of 

entanglement by the especially example. According to our 

opinion to read this paper enable for student is effective. 
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