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Abstract 
It is a review of the classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon with 
allowance for the resistance of the medium. Drag force is accepted as a quadratic function of speed. A full description 
of the problem is ensured by the simple approximate analytical formulae. This description includes the determining of 
the basic parameters of the projectile motion. The motions of a baseball is presented as examples. 
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Resumen 
Este es un artículo que trata una revisión del problema clásico del movimiento de un punto de masa (proyectil) arrojada 
en un ángulo al horizonte con una previsión de la resistencia del medio. La fuerza de arrastre es aceptada como una 
función cuadrática de la velocidad. Una descripción complete del problema es asegurada por las formulas analíticas 
aproximadas simples. Esta descripción incluye la determinación de los parámetros básicos de movimiento de 
proyectiles. Los movimientos de una pelota de béisbol se presentan como ejemplos. 
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I. INTRODUCTION 
  
The problem of the motion of a point mass (projectile) 
thrown at an angle to the horizon has a long history. It is one 
of the great classical problems. The number of works 
devoted to this task is immense. This task arouses interest of 
authors as before [1, 2, 3, 4, 5, 11, 14]. With zero air drag 
force, the analytic solution is well known. The trajectory of 
the point mass is a parabola. In situations of practical interest, 
such as throwing a ball, taking into account the impact of the 
medium the quadratic resistance law is usually used. In that 
case the mathematical complexity of the task strongly grows. 
The problem probably does not have an exact analytic 
solution. Therefore the attempts are being continued to 
construct approximate analytical solutions for this problem 
[6, 7, 8, 9, 10]. For this purpose, various methods are used – 
both traditional approaches [3, 4, 6, 13], and the modern 
methods [5]. Besides the description of the projectile motion 
with a simple approximate analytical formulae under the 
quadratic air resistance is of great methodological interest. 

In [12, 13] comparatively simple approximate analytical 
formulae have been obtained to study the motion of the 
projectile in a medium with a quadratic drag force. The 
proposed analytical solution differs from other solutions by 
simplicity of formulae, ease of use and high accuracy. All 
required parameters are determined directly from the initial 
conditions of projectile motion - the initial velocity and angle 
of throwing. The proposed formulae make it possible to 
study the motion of a point mass in a medium with the 
resistance in the way it is done for the case without drag. 

In this article the term “point mass” means the center of 
mass of a smooth spherical object of finite radius r and cross-

sectional area S = πr2. The conditions of applicability of 
the quadratic resistance law are deemed to be fulfilled, 
i.e. Reynolds number Re lies within 1×103 < Re < 2×105 
[4]. These values correspond to the velocity of motion of 
a projectile, lying in the range between 0.25 m/s and 53 
m/s. 

The aim of the present work is to give a simple 
formula for the construction of the trajectory of the 
projectile motion with quadratic air resistance, available 
to senior pupils and first-year undergraduates. 
 
 
II. EQUATIONS OF MOTION 
 
Suppose that the force of gravity affects the point mass 
together with the force of air resistance R (Fig. 1), which 
is proportional to the square of the velocity of the point 
and is directed opposite the velocity vector. For the 
convenience of further calculations, the drag force will 
be written as 𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2 . Here m is the mass of the 
projectile, g is the acceleration due to gravity, k is the 
proportionality factor. Vector equation of the motion of 
the point mass has the form 
 

mw = mg + R, 
 
where w – acceleration vector of the point mass. 
Differential equations of the motion, commonly used in 
ballistics, are as follows [15] 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑔𝑔sin𝜃𝜃 − 𝑔𝑔𝑔𝑔𝑔𝑔2, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑔𝑔cos𝜃𝜃
𝑉𝑉

 , 
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    𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑉𝑉cos𝜃𝜃,     𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑉𝑉sin𝜃𝜃.            (1) 

 
Here V is the velocity of the point mass, θ is the angle 
between the tangent to the trajectory of the point mass and 
the horizontal, x, y are the Cartesian coordinates of the point 
mass, and 
 

𝑘𝑘 =
𝜌𝜌𝑎𝑎𝑐𝑐𝑑𝑑𝑆𝑆
2𝑚𝑚𝑚𝑚

=
1

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

 
is the proportionality factor, 𝜌𝜌𝑎𝑎  is the air density, 𝑐𝑐𝑑𝑑   is the 
drag factor for a sphere, and S is the cross-section area of the 
object (Fig. 1). The first two equations of the system (1) 
represent the projections of the vector equation of motion for 
the tangent and principal normal to the trajectory, the other 
two are kinematic relations connecting the projections of the 
velocity vector point mass on the axis x, y with derivatives 
of the coordinates. 
 

FIGURE 1. Basic motion parameters. 
 
The well-known solution of Eqs. (1) consists of an explicit 
analytical dependence of the velocity on the slope angle of 
the trajectory and three quadratures 
 

𝑉𝑉(𝜃𝜃) = 𝑉𝑉0cos𝜃𝜃0

cos𝜃𝜃�1+𝑘𝑘𝑘𝑘02cos2𝜃𝜃0(𝑓𝑓(𝜃𝜃0)−𝑓𝑓(𝜃𝜃))
 , 

         𝑓𝑓(𝜃𝜃) = sin𝜃𝜃
cos2𝜃𝜃

+ ln tan(𝜃𝜃
2

+ 𝜋𝜋
4

).                (2) 
 

𝑡𝑡 = 𝑡𝑡0 −
1
𝑔𝑔 ∫

𝑉𝑉
cos𝜃𝜃

𝑑𝑑𝑑𝑑𝜃𝜃
𝜃𝜃0

, 
 

𝑥𝑥 = 𝑥𝑥0 −
1
𝑔𝑔 ∫ 𝑉𝑉2𝑑𝑑𝑑𝑑𝜃𝜃

𝜃𝜃0
, 

 
𝑦𝑦 = 𝑦𝑦0 −

1
𝑔𝑔 ∫ 𝑉𝑉2tan𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃

𝜃𝜃0
.                 (3) 

 
Here V0 and θ0 are the initial values of the velocity and 
the slope of the trajectory respectively, t0 is the initial 
value of the time, 𝑥𝑥0 ,𝑦𝑦0  are the initial values of the 
coordinates of the point mass (usually accepted 𝑡𝑡0 =
𝑥𝑥0 = 𝑦𝑦0 = 0). The derivation of the formulae (2) is shown 
in the well-known monograph [16]. The integrals on the 
right-hand sides of (3) cannot be expressed in terms of 
elementary functions. Hence, to determine the variables 
t, x and y we must either integrate (1) numerically or 
evaluate the definite integrals (3). Formulae (2) of this 
solution will be used later. 
 
 
 
III. ANALYTICAL FORMULAE FOR DE-
TERMINING THE MAIN PARAMETERS OF 
MOTION OF THE POINT MASS 
 
Comparatively simple approximate analytical formulae 
for the main parameters of motion of the projectile are 
derived in [12, 13]. The four parameters correspond to 
the top of the trajectory, four – to the point of drop. We 
will give a complete summary of the formulae for the 
maximum height of ascent of the point mass H, motion 
time Т, the velocity at the trajectory apex Va, flight range 
L, the time of ascent ta, the abscissa of the trajectory apex 
хa, impact angle with respect to the horizontal θ1 and the 
final velocity V1. These formulae are summarized in the 
right column of Table I. In the left column of this Table I 
are presented similar formulae of the parabolic theory for 
comparison.  

 
TABLE I. Analytical formulae for the main parameters. 

 
No drag (R = 0) Quadratic drag force (R = mgkV2) 

𝐻𝐻 =
𝑉𝑉02sin2𝜃𝜃0

2𝑔𝑔  𝐻𝐻 =
𝑉𝑉02sin2𝜃𝜃0

𝑔𝑔(2 + 𝑘𝑘𝑘𝑘02sin𝜃𝜃0)
 

 𝑇𝑇 = 2 𝑉𝑉0sin𝜃𝜃0
𝑔𝑔

= 2�2𝐻𝐻
𝑔𝑔

 𝑇𝑇 = 2�
2𝐻𝐻
𝑔𝑔  

 
𝑉𝑉𝑎𝑎 = 𝑉𝑉0cos𝜃𝜃0 𝑉𝑉𝑎𝑎 =

𝑉𝑉0cos𝜃𝜃0

�1 + 𝑘𝑘𝑘𝑘02(sin𝜃𝜃0 + cos2𝜃𝜃0lntan(𝜃𝜃02 + 𝜋𝜋
4))
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𝐿𝐿 =
1
𝑔𝑔𝑉𝑉0

2sin2𝜃𝜃0 = 𝑉𝑉𝑎𝑎𝑇𝑇  
𝐿𝐿 = 𝑉𝑉𝑎𝑎𝑇𝑇 

𝑡𝑡𝑎𝑎 =
𝑉𝑉0sin𝜃𝜃0

𝑔𝑔 =
𝑇𝑇
2 𝑡𝑡𝑎𝑎 =

𝑇𝑇 − 𝑘𝑘𝑘𝑘𝑘𝑘𝑎𝑎
2  

 

𝑥𝑥𝑎𝑎 =
𝐿𝐿
2 = �𝐿𝐿𝐿𝐿cot𝜃𝜃0 

 
𝑥𝑥𝑎𝑎 = �𝐿𝐿𝐿𝐿cot𝜃𝜃0 

𝜃𝜃1 = −𝜃𝜃0 = −arctan �
𝐿𝐿𝐿𝐿

(𝐿𝐿 − 𝑥𝑥𝑎𝑎)2� 𝜃𝜃1 = −arctan �
𝐿𝐿𝐿𝐿

(𝐿𝐿 − 𝑥𝑥𝑎𝑎)2� 

𝑉𝑉1 = 𝑉𝑉0 𝑉𝑉1 = 𝑉𝑉(𝜃𝜃1) 

 
↑ 

These formulae enable us to calculate the basic parameters 
of motion of a point mass directly from the initial data V0 , 
θ0, as in the theory of parabolic motion. With zero drag (k 
= 0), the proposed formulae go over into the respective 
formulae of point mass parabolic motion theory. We note 
that the structure of the formulae for the parameters is the 
same at the movement with resistance and at the movement 
without resistance. 

As an example of the use of present formulae we 
calculated the motion of a baseball with the following 
initial conditions 

 
V0 = 40 m/s , θ0 = 45°, k = 0.000625 s2/m2 , 
g = 9.81 m/s2.                                                     (4) 

 
 

TABLE II. Comparison of numerical and analytical calculations. 
 

Parameter   Numerical 
value      

Analytical 
value 

Error   
(%) 

Н, m 29.81 30.12 +1.0 

Т, s 4.91 4.96 +1.0 

Va , m/s 19.30 19.30 0 

L, m 96.07 95.68 -0.4 

ta , s 2.31 2.30 -0.4 

хa , m 53.02 53.68 +1.2 

θ1 , deg -57.27 -58.55 +2.2 

V1 , m/s 25.53 26.00 +1.8 

 
 
The results of calculations are recorded in Table II. The 
second column shows the values of parameters obtained by 
numerical integration of the motion equations (1) by the 
fourth-order Runge-Kutta method. The third column 
contains the values calculated by present formulae from 
the Table I. The deviations from the exact values of 
parameters are shown in the fourth column of the Table 2. 
Tabulated data show that the values of basic parameters of 
the projectile motion (flight range L, motion time T, height 
H) calculated by analytical formulae differ from the exact 
values no more than 1%. 

Fig. 2 is an interesting geometric picture for Table II. If 
we use motion parameters L, Н, хa to construct the ABC 

triangle with the height BD = LH, segments AD = 𝑥𝑥𝑎𝑎2 and 
CD =(𝐿𝐿 − 𝑥𝑥𝑎𝑎)2, then in this triangle ∠A ≈𝜃𝜃0, ∠C ≈𝜃𝜃1. 
Thus, for the values L = 96.07, Н = 29.81, хa = 53.02 we 
have: ∠A = 45.5°, ∠C = 57.1°. Recall that the exact values 
of angles are ∠A=45°, ∠C = 57.3°. 
 
                                             B 
 
 
 
 

   LH 
   
 

     θ0           θ1 
A                       D                              C 
                  
            𝑥𝑥𝑎𝑎2             (𝐿𝐿 − 𝑥𝑥𝑎𝑎)2 
 

 
FIGURE 2. Motion parameters. 

 
Present formulae make it possible to obtain simple 
approximate analytical expressions for the basic functional 
relationships of the problem y(x), y(t), y(θ), x(t), x(θ), t(θ) 
[12, 13]. 

We construct the first of these dependencies. In the 
absence of a drag force, the trajectory equation of a point 
mass is a parabola 

 
𝑦𝑦(𝑥𝑥) = 𝑥𝑥 tan𝜃𝜃0 −

𝑔𝑔𝑥𝑥2

2𝑉𝑉02cos2𝜃𝜃0
. 

 
Using parameters 𝐻𝐻, 𝐿𝐿, 𝑥𝑥𝑎𝑎  from the left column of Table I, 
this equation can be written as 
 

𝑦𝑦(𝑥𝑥) = 𝐻𝐻𝐻𝐻(𝐿𝐿−𝑥𝑥)
𝑥𝑥𝑎𝑎2

.                          (5) 
 
When the point mass is under a drag force, the trajectory 
becomes asymmetrical. The top of the trajectory is shifted 
toward the point of incidence. In addition, a vertical 
asymptote appears near the trajectory. Taking these 
circumstances into account, we shall construct the function 
y(x) as [12]  
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𝑦𝑦(𝑥𝑥) = 𝐻𝐻𝐻𝐻(𝐿𝐿−𝑥𝑥)

𝑥𝑥𝑎𝑎2+(𝐿𝐿−2𝑥𝑥𝑎𝑎)𝑥𝑥
 .                         (6) 

 
The constructed dependence y(x) provides the shift of the 
apex of the trajectory to the right and has a vertical 
asymptote. In the case of no drag 𝐿𝐿 = 2𝑥𝑥𝑎𝑎 , relationship (6) 
goes over into (5).  

We note the remarkable property of the formula (6). We 
substitute the exact values of the parameters L, Н, хa, 
obtained by numerical integration of the system (1), into 
the formula (6). Then the numerical trajectory and the 
analytical trajectory constructed by means of the formula 

(6) are identically the same. This means that formula (6) 
approximate absolutely precisely projectile's trajectory 
which are numerically constructed with using equations (1) 
at any values of the initial conditions V0, θ0.  

Based upon Eqs. from Table I and (6) an approximate 
trajectory was constructed. It is shown in Fig. 3 (dashed 
line). The same values (4) were used for the calculations. 
Thick solid line in this figure is obtained by numerical 
integration of motion equations (1) with the aid of the 4-th 
order Runge-Kutta method. As it can be seen from the 
figure, the analytical solution (6) and a numerical solution 
are almost the same. Dotted line in this figure is 
constructed in the absence of air resistance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3. The graph of the trajectory y= y(x). 
 
 

Thus, simple formulae containing elementary functions are 
used to construct a projectile trajectory with quadratic law 
of air resistance. It can be implemented even on a standard 
calculator. Lately many authors [9, 10, 11] have used the 
Lambert W function to study the projectile motion with 
resistance. But this relatively “new” function is not 
available on a calculator. 

For a baseball the typical values of the drag force 
coefficient k is about 0.0005 ÷ 0.0006 s2/m2 [6, 8]. We 
introduce the notation 𝑝𝑝 = 𝑘𝑘𝑘𝑘02 . The dimensionless 
parameter p has the following physical meaning - it is the 
ratio of air resistance to the weight of the projectile at the 
beginning of the movement. Formulae from the Table I 
have a bounded region of application. The main 
characteristics of the motion H, T, Va, L, ta, хa, θ1, V1 have 
accuracy to within 2 - 3% for values of the launch angle, 
for initial velocity and for the parameter p from ranges 
 

 0°≤ θ0 ≤ 70°, 0 ≤ 𝑉𝑉0 ≤ 50 m/s, 0 ≤ p ≤ 1.5.     (7) 
 

The some transformation of the proposed formulae [14] 
makes it possible to improve the accuracy of calculating 
the main parameters. Now it is possible to construct the 
trajectory in the entire range of launch angles and at values 
of the initial velocity and the parameter p 
 

  0°≤ θ0 ≤ 90°, 0 ≤ 𝑉𝑉0 ≤ 80 m/s, 0 ≤ p ≤ 4.  
 
 

IV. CONCLUSION 
 
The proposed approach is based on the theory of the 
parabolic motion of the projectile. The use of analytical 
formulae make it possible to simplify significantly a 
qualitative analysis of the projectile motion with quadratic 
drag force. All basic parameters are described by simple 
analytic formulae. Moreover, numerical values of the 
sought variables are determined with acceptable accuracy. 
Thus, proposed formulae make it possible to study 
projectile motion with quadratic drag force even for senior 
pupils. 
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