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Abstract 
An algebraic method of three constructing potentials for which the Schrödinger equation can be solved exactly is 

presented. A form of the generators of SL(2,C) potential algebra has been employed to the problem. These potentials 

have been expressed as supersymmetric partner potentials. Finally, the results are compared with ones obtain before. 
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Resumen 
Se presenta un método algebraico de tres potenciales de la construcción para los que la ecuación de Schrödinger se 

puede resolver exactamente. Una forma de los generadores del álgebra SL(2,C) del espacio potencial se ha empleado 

para el problema. Estos potenciales se han expresado como potenciales socios con supersimetría. Por último, los 

resultados se comparan con los obtenidos anteriormente. 
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I. INTRODUCTION  
 

The Hermitian quantum mechanics is a well-developed 

framework because a Hermitian Hamiltonian leads to a real 

spectrum. However, a decade ago, it was observed that a 

large class of non-Hermitian Hamiltonians possess real 

spectra. Imaginary potential usually appears in a system to 

describe physical processes phenomenologically due to its 

simplicity, which has been investigated under the non- 

Hermitian quantum mechanics framework. The study of 

exactly solvable potentials has generated a lot of interest 

since the early development of supersymmetric quantum 

mechanics [1, 2, 3, 4, 5]. Originally, the idea of 

supersymmetry first appeared in field theories in terms of 

bosonic and fermionic fields. The eigenvalues and 

eigenvectors of these potentials can be derived by using the 

methods of supersymmetric quantum mechanics. The 

majority of these potentials have also been shown to 

possess a potential algebra and hence are also solvable by 

group theoretical techniques. Recently, Lie algebraic 

techniques [6, 7, 8, 9, 10, 11, 12, 13] have been used 

extensively to obtain the spectra of various physical 

systems such as rotation vibration spectra in molecules [14] 

and collective states in nuclei [15]. The introduction of the 

deformation parameter may serve as an additional 

parameter in describing inter-atomic interactions.  

In this paper, we discuss three exactly solvable complex 

potentials by using a potential algebraic approach based on 

complex Lie algebra SL(2,C). We shall show that these 

potentials are generated by the complex superpotential and 

the energy spectrum of these potentials become real for 

particular choice of the parameter. We shall also show that 

there is an intimate relationship between potential algebra 

and supersymmetric quantum mechanics.  
The present study is organized as follows. To make this 

work self contained, we first give a brief review of the 

SL(2,C) potential algebra in Sec. II. Sec. III is devoted to 

express the Scarf potential, the Pöschl-Teller potential and 

the Morse potentialin terms of supersymmetric partners. 

Finally, we make a few concluding remarks in Sec. IV. 

 

 

II. SL(2,C) POTENTIAL ALGEBRA 
 

The SL(2,C) potential algebra is described by the three 

generators 
0J

, J [11, 12, 13]. These generators are 

connected by: 

 

  JJJ ],[ ,0 ,  02],[ JJJ 
.
                (1)

 

 

The Casimir operator of this structure is given by 

0

2

0

2 JJJJJ                             (2) 

 

The eigenstate of 
0J  and 2J can be denoted by 
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jkkjkJ 
0

,  ......,.........1,  jjk   (3) 

 

jkjjjkJ )1(2  ,  ......,.........1,  jjk (4) 

 

and 
21 ijjj  , 

21 ikkk  , ,11 njk  22 jk   where 

2121 ,,, kkjj
  

 are real numbers and n is natural numbers. 

The states with kj   (i. e.
 

0n ) satisfy the equation 

0 jjJ , while those with higher values of n
 
 can be 

obtained from them by repeated applications of 
j  and use 

of the relation 1 jkjjkJ . 

The differential realization of the above generators are 

 




 iJ 0

, 



























 

 )()(
2

1
xgxfi

x
eJ i 



 ,
   (5)

 

 

where  20  , x  is real and )(),( xgxf  are complex 

valued functions satisfy 

 

,1 2f
dx

df


  
fg

dx

dg
 .

                    (6)
 

 

Using Eqns. (2) and (5) one can obtain 
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2
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
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


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










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dx
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x
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  (7) 

 

The differential realization (7) can be used to derive the 

second order differential equations. Those differential 

equations can be expressed in terms of Casimir operator 

 

,2JH  jkjjjkH )1(  .                  (8) 

 

Let us consider the basis function, 

 






2
),(

ik

jkjk

e
xjk  .                     (9) 

 

It follows that the functions )(xjk satisfies the 

Schrödinger equation 

  

       
jkjkkjk jV 

2

2

1








  

n

k

nn
k

kn
k EV   )()( ,         (10) 

 

where )()( )( xx k

njk   . The family of potentials ),(xVk  
is represented by 

 

22 2
4

1
)( g

dx

dg
k

dx

df
kxVk 








 ,           (11) 

 

and the energy eigenvalues are given by 

 
2

21

)(

2

1








 nikkE k

n
.                  (12) 

 

Solving the differential equation 0)()(

0  xJ k , the 

eigenfunctions )()(

0 xk are easily obtained. Remaining 

eigenfunctions are obtained by successive application of 

J  on )()(

0 xk . For bound states ( 0)()( k

n ), n  is 

restricted to the range 
2

1
,.....2,1,0 1max  knn . 

The solutions of the equation (6) are 

 

)(tanh)( ixxf q  , and 

 

)(sec)()( 21  ixhixg q  ,
              

(13) 

 

( ) coth ( ),qf x x i   

)(cos)()( 21  ixechixg q  ,        (14) 

)(xf   and  
xeixg   )()( 21 ,

       (15) 

 

where )0(,,,0 21  cq  are real, 1 , 
44





   

,  

cxx   and the deformed hyperbolic functions are 

defined as: 
2

sinh
xx

q

qee
x


 ,

2
cosh

xx

q

qee
x


 and 

xx

xx

q
qee

qee
x








tanh .  

Using Eqns. (11), (13), (14) and (15) we have, 
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              )(tanh)(sec  ixixh qq  ,                (16) 
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2
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2
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4

1
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              ))((2)(cos 2121
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              )(coth)(cos  ixixech qq  ,            (17) 

 

        )(22

21 )()(  ix

k eixV  

        
)(

2121 ))((2  ixeiikk  .                  (18) 
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III. SUPERSYMMETRIC PARTNERS 

 

By suitable choice of superpotential and factorization 

energy we shall show that ),(xVk  
can be considered as a 

special case of the supersymmetric partner potentials 

ExWxWxV  )()()( 2  . 

 
A. Scarf potential 

 

We take the superpotential and factorization energy as: 
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
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and 

    )2(
2

1
221

2

2

2

1 kkkikkE 







              (20) 

In order to obtain real energy spectrum, the parameters 

must choosen as 0)Im( k . The superpotential depends  on 

the deformation parameter q  and it is absent in the energy 

equation (20). Using Eqns. (19) and (20) 

ExWxWxV  )()()( 2  
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Eq. (21) is the same as Eq. (16) i.e. ).()( xVxVk

  Again  
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B. Pöschl-Teller potential 

 
We take the superpotential and factorization energy as: 
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To obtain real energy, one has to set 0)Im( k  
in (24). 

Energy spectrum is independent of deformation parameter 

q . Using Eqns. (23) and (24) 
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Eq. (21) is the same as Eq. (16) i.e. ).()( xVxVk

  Again 
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C. Morse potential 

 
We take the superpotential and factorization energy as: 
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To obtain real energy, one has to set 0)Im( k  in (28). 

Using Eqns. (27) and (28) 
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Eq. (29) is the same as Eq. (18) i.e. ).()( xVxVk

  Again 
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IV. CONCLUSIONS 
 

In this paper, a study of SL(2,C) potentials through 

supersymmetric quantum mechanics have been discussed. 

Three sets SL(2,C) potentials have been expressed in terms 

complex superpotential and factorization energy. It is 

shown that, all the potential cases, 
H has one level less 

than 
H . Also, the results are consistent with ref [16] for 

1q ,  02 k . 
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