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Abstract 
The purpose of the present paper is to outline in qualitative terms, the way in which the dielectric constant varies with 

frequency and temperature, and to indicate the type of information regarding the structure of materials which can be 

obtained from the study of the dielectric constant. The various types of polarizations, which have been demonstrated to 

exist, are listed, together with an outline of their characteristics. The development of the dielectric theory in recent 

years has been along such specialized lines that there is a need for some correlation between the newer and the older 

theories of dielectric behavior to keep clear what is common to both, though sometimes expressed in different terms. 

The theoretical concept of the dielectric constant (), which is an important dielectric property of matter, has been 

discussed by Clausius-Mossotti, Debye, Onsager. 
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Resumen 
El propósito del presente trabajo es describir en términos cualitativos, la forma en que la constante dieléctrica varía 

con la frecuencia y la temperatura, y para indicar el tipo de información con respecto a la estructura de los materiales 

que se pueden obtener a partir del estudio de la constante dieléctrica. Se listan los distintos tipos de polarización, que 

se han demostrado que existen, junto con una descripción de sus características. El desarrollo de la teoría del 

dieléctrico en los últimos años ha sido a lo largo de líneas especializadas en las que hay necesidad de una cierta 

correlación entre la más nuevas teorías y las antiguas del comportamiento dieléctrico para mantenerse separado lo que 

es común a ambas, aunque a veces se expresa en términos diferentes. El concepto teórico de la constante dieléctrica 

(), que es una propiedad importante de la materia dieléctrica, ha sido discutido por Clausius-Mossotti, Debye, 

Onsager. 
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I. INTRODUCTION 

In order to understand the dielectric behaviour of substances 

in the solid state, one has to essentially go through the 

conceptual background of the necessary theories of dielectric 

solids. The state of aggregation of molecules in a continuum 

depends on the type of chemical bond, molecular geometry, 

mutual effect between atomic groups, nature of complexes 

etc. A system of electric charges of molecules in the 

neighbourhood is involved in the process of molecular 

interactions. The spatial arrangement of the electrically 

charged atoms and molecules in the system is perturbed by 

the influence of physical conditions. These facts on the basis 

of certain theories, describe the bulk. Properties of the 

substances that exist in a physical state. Mostly the dielectric 

properties are described in terms of the dielectric 

permittivity and molecular dipole moments of the substances 

in local and non-local fields. The dielectric permittivity, often 

called the dielectric constant, is a characteristic measurable 

quantity. The molecular dipole moment measured from the 

dielectric constant of the bulk material depends on the 

interaction with its neighbour and hence gives valuable 

information about the molecular structure. The dielectric 

constant depends on how polarizable a material is and the 

frequency of the applied field. The fall of polarizability is 

related to the decrease of the dielectric constant and the 

occurrence of the absorption of electrical energy constituting 

dielectric dispersion. This behaviour is shown by the 

frequency dependent dielectric loss.  

Electrical insulator materials, which will prevent the flow 

of current in an electrical circuit, have been used since from 

the beginning of the science and technology of electrical 

phenomena. Dielectrics are insulating materials that exhibit 

the property of electrical polarization; thereby they modify 

the dielectric function of a vacuum. The first capacitor was 

constructed by Cunaeus and Mussachenbroek in 1745, which 
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was known as the Leyden jar [1]. But there were no studies 

about the properties of insulating materials until 1837. 

Faraday published the first numerical measurements on these 

materials, which he called dielectrics [2]. He has found that 

the capacity of a condenser was dependent on the nature of 

the material separating the conducting surface. This 

discovery encouraged further empirical studies of insulating 

materials, aimed at maximizing the amount of charge that can 

be stored by a capacitor. Throughout most of the 19th century, 

scientists searching for insulating materials for specific 

applications have become increasingly concerned with the 

detailed physical mechanism governing the behavior of these 

materials. In contrast to the insulation aspect, the dielectric 

phenomena have become more general and fundamental, as 

they originate from dielectric polarization. 

Mossotti [3, 4] and Clausius [5] have done a systematic 

investigation about the dielectric properties of materials. 

They attempted to correlate the specific inductive capacity, a 

macroscopic characteristic of the insulator introduced by 

Faraday [2] which is now popularly termed as the dielectric 

constant with the microscopic structure of the material. 

Following Faraday in considering the dielectrics to be 

composed of conducting spheres in a non-conducting 

medium, Clausius and Mossotti succeeded in deriving a 

relation between the real part of the dielectric constant εr and 

the volume fraction occupied by the conducting particles in 

the dielectric. In the begning of the 20th century, Debye [6] 

realized that some molecules had permanent electric dipole 

moments associated with them, and this molecular dipole 

moment is responsible for the macroscopic dielectric 

properties of such materials. Debye succeeded in extending 

the Clausius -Mossotti theory to take into account the 

permanent moments of the molecules, which allowed him 

and others to calculate the molecular dipole moment from the 

measurement of the dielectric constant. His theory was later 

extended by Onsager [7] and Kirkwood [8, 9], and is in 

excellent agreement with the experimental results for most of 

the polar liquids. Debye’s other major contribution to the 

theory of dielectrics is his application of the concept of 

permanent molecular dipole moment to explain the 

anomalous dispersion of the dielectric constant observed by 

Drude [10]. For an alternating field, Debye deduced that the 

time lag between the average orientation of moments and the 

field becomes noticeable, when the frequency of the field is 

within the same order of magnitude as the reciprocal 

relaxation time. In this way the molecular relaxation process 

leads to the macroscopic phenomenon of dielectric 

relaxation, i.e., the anomalous dispersion of the dielectric 

constant and the accompanying absorption of electromagnetic 

energy over a certain range of frequencies. 

Debye’s theory shows excellent agreement with the 

experiments for the polar liquids, while the dielectric 

behaviour for solids was found to deviate considerably. 

Several modifications and extensions of Debye’s theory have 

been proposed to correct this. There are two major 

approaches in the extension of Debye’s theory. The first 

approach, pioneered by Cole [11], Davidson [12] and 

William [13], interprets the non –Debye relaxation behavior 

of the material in terms of the superposition of an 

exponentially relaxing process, which then leads to the 

distribution of relaxation times. The second approach by 

Joncher [14] proposes that the relaxation behaviour at the 

molecular level is intrinsically non-Debye-like due to the 

cooperative molecular motions. 

After more than eighty years of development, the theory 

of dielectrics is still an active area for research. 

Understanding the behaviour of dielectric materials with the 

variations of field, temperature and frequency is of particular 

importance for present day electronics. Modern day 

electronics demand dielectric materials with narrowly defined 

properties tailored for particular applications. The scaling of 

metal-oxide-semiconductor (MOS) devices for ultra large-

scale integration (ULSI) applications has been placing an 

ever increasing burden upon the performance of gate 

dielectrics [15]. Durability has become an issue as the 

dielectric thickness is decreased leading to a search for 

dielectrics with better properties than the conventional SiO2 

dielectric. The gallium arsenaide (GaAs) based metal - 

insulator- semiconductor field effect transistor (MISFET) is 

still largely unavailable, due to the lack of a suitable 

dielectric material for the insulation layer [16]. 

Recent advances in wireless communication technologies 

have elevated the interest in materials with the unusual 

combination of properties like high dielectric constant, low 

dielectric loss and low values of temperature dependence of 

the dielectric constant [17]. The constant need for 

miniaturization provides the continuing driving force for the 

discovery and development of increasingly sophisticated 

materials to perform the same or improved functions with 

decreased size and weight. The dielectric materials 

mentioned above are used as the basis for resonators and 

filters for the microwaves carrying the desired information 

[18]. These materials are presently employed as bulk 

ceramics in microwave communication devices. This paper 

gives a qualitative account of the way in which dielectric 

properties and the behaviour of solid materials will be 

necessary to use some kind of theory to represent the 

dielectrics solids. 

 

 

II. THEORIES OF DIELECTRICS 
 

This section presents a brief description of the atomic 

interpretation of the dielectric and optical properties of 

insulator materials, on the basis of  the classical theory. This 

section is essentially concerned with the static dielectric 

constant, the frequency dependence of the dielectric constant 

and dielectric losses. 

 

A. Electric susceptibility and permittivity 

 

It was Michael Faraday who first noticed, that when a 

capacitor of value C0 under vacuum is filled with a dielectric 

material, its charge storage capacity (capacitance) increases 

to a value of C. The ratio χ’ of the increase of capacitance ΔC 

=C-C0 to its initial capacitance- C0, 
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χ’ is called the electrical susceptibility of the dielectric. The 

most often used terminology is the dielectric permittivity or 

dielectric constant instead of susceptibility, which is defined 

as the ratio of the capacitance C of the capacitor filled with a 

dielectric to the value C0 of the same capacitor under vaccum. 
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From the above equations the relationship between the 

electric susceptibility and the dielectric permittivity is given 

as: 

 

1'  r  .                                     (3) 

 

Thus, by definition, the electric susceptibility and permittivity 

are non-dimensional real quantities. The dielectric constant or 

permittivity of a material is the measure of the extent to 

which the electric charge distribution in the material can be 

distorted or polarized by the application of an electric field. 

 

 

B. Mechanism of electric polarization 

 

At the atomic level, all matter consists ultimately of 

positively and negatively charged particles, whose charges 

balance each other macroscopically in the absence of an 

electric field, giving rise to an overall charge neutrality. Once 

the electric field is applied, the balances of charges are 

perturbed by the following four basic polarization 

mechanisms [19]. 

Electronic polarization: It occurs in neutral atoms when 

an electric field displaces the nucleus with respect to the 

negative charge. Thus electronic polarization is an induced 

polarization effect. 

Atomic/ionic polarization: It is observed when different 

atoms that comprise a molecule share their electrons 

asymmetrically, and cause the electron cloud to be shifted 

towards the stronger binding atom, the atoms acquire charges 

of opposite polarity and an external field acting on these net 

charges tends to change the equilibrium positions of the 

atoms themselves, leading to atomic polarization. 

Dipolar/orientational polarization: When an ionic bond 

is formed between two molecules by the transfer of some 

valence electrons, a permanent dipole moment will originate 

in them. This permanent dipole moment is equal to the 

product of the charges of the transferred valence electrons, 

and the inter-atomic distance between them. In the presence 

of an electric field E, the molecules carrying a permanent 

dipole moment will orient to align along the direction of the 

electric field E. This process is called the dipolar or 

orientational polarization. This occurs only in dipolar 

materials possessing permanent dipole moments. 

Space charge polarization: It is present in dielectric 

materials which contain charge carriers that can migrate for 

some distance through the bulk of the material (via diffusion, 

fast ionic conduction or hopping, etc.) thus creating a 

macroscopic field distortion. Such a distortion appears to an 

outside observer as an increase in the capacitance of the 

sample and may be indistinguishable from the real rise of the 

dielectric permittivity. Space charge polarization is the only 

type of electrical polarization that is accompanied by a 

macroscopic charge transport (and in the case when the 

migrating charge carriers are ions a macroscopic mass 

transport as well). In general, space charge polarizations can 

be grouped into hopping polarization and interfacial 

polarization. In dielectric materials, localized charges (ions 

and vacancies, or electrons and holes) can hop from one site 

to another, which creates the hopping polarization. Similarly, 

the separation of the mobile positive and negative charges 

under an electric field can produce an interfacial polarization. 

 

 

C. Polarization and dielectric constant 

 

The ability of a dielectric material to store electric energy 

under the influence of an electric field, results from the field-

induced separation and alignment of electric charges. 

Polarization occurs when the electric field causes a separation 

of the positive and negative charges in the material. The 

larger the dipole moment arms of this charge separation in 

the direction of a field and the larger the number of these 

dipoles, the higher the material’s dielectric permittivity. In 

the presence of electronic, ionic and dipolar polarization 

mechanisms, the average induced dipole moment per 

molecule Pav will be the sum of all the contributions in terms 

of the local field (effective field) acting on each individual 

molecule. 

 

 
locdlociloceav EEEP    .                   (4) 

 

Here, αe, αi, αd are the electronic, ionic and dipolar 

polarizabilities. Eloc is the local field or the effective field at 

the site of an individual molecule that causes the individual 

polarization. Each effect adds linearly to the net dipole 

moment of the molecule. Interfacial polarization cannot be 

simply added to the total polarization as αijEloc, because it 

occurs at the interfaces and cannot be put into an average 

polarization per molecule in the bulk. Moreover, the fields 

are not well defined at the interfaces. 

For simple dielectrics (eg. gases) one can take the local 

field to be the same as the macroscopic field. This means that 

Eloc=E the applied field, and therefore the polarization is, 

 

 EEP ree 0)1(   ,                       (5) 

  

P= N. Pav where N is the number of atoms or molecule per 

unit volume [20]. 

 

0/1  Nr  ,                                (6) 
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α is the polarizability of the molecule. 

 

 

D. Clausius and Mossotti relation for dielectric 

permittivity 

 

Consider a molecule of a dielectric medium situated in a 

uniform electric field E. The total electric field acting on this 

molecule Eloc will have three main components- E1, E2, and 

E3. Here E1 is the applied electric field E, E2 is the field from 

the free ends of the dipole chain, and E3 is the near field 

arising from the individual molecular interactions. In solids 

we have to consider the actual effective field acting on a 

molecule in order to estimate the dielectric permittivity. For 

electronic and ionic polarization, the local field for cubic 

crystals and isotropic liquids can be given by the Lorenz 

field, as 
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03

1
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By assuming that the near field E3 is zero, Clausius and 

Mossotti derived a relation for the dielectric constant of a 

material under electronic and ionic polarization [21]. 
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Here, εr is the relative permittivity at low frequencies, αi is 

the effective ionic polarizability per ion pair, Ni is the 

number of ions pair per unit volume, αe is the electronic 

polarizability and Ne is the number of ions (or atoms) per 

unit volume exhibiting electronic polarization. The 

atomic/ionic polarizability αi and the electronic polarizability 

αe cannot be separated at low frequencies, and hence, they 

are represented together as the induced polarizability αind. 

Hence, equation 8 can be written as: 
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This is known as the Clausius – Mossotti equation for non 

polar dielectrics. Above the frequencies of ionic polarization 

relaxation, only electronic polarization will contribute to the 

relative permittivity, which will be lowered to εr∞ (relative 

permittivity at optical frequencies). 
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By using the Maxwell relation for a lossless (non-absorbing), 

non magnetic medium, 

 

                     
 rn 2

 ,                                   (11) 

 

where n is the index of refraction of the material, equation 

(10) can be rewritten as: 
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In this form, it is known as the Lorentz-Lorenz equation. It 

can be used to approximate the static dielectric constant εr of 

non polar and non magnetic materials from their optical 

properties. In the case of dipolar materials we cannot use the 

simple Lorentz field approximation, and hence the Clausius–

Mossotti equation cannot be used in the case of dipolar 

materials. 

 

 

D. Debye theory for polar dielectrics 

 

In addition to the induced polarization present in all 

dielectrics, the polar dielectrics possess an orientational 

polarization that exists even in the absence of an applied 

electric field. It should be noted that the polarizability αo 

corresponding to the orientational polarization is related to 

the orientation of the molecules, which are heavier than 

atoms or electrons that are involved in induced polarization. 

Hence, the αo contributes to the total molecular polarizability 

α, at much lower frequencies than αind does. So the dielectric 

constant that remains after the relaxation of the 

orientationally polarization (the dielectric constant due to the 

induced polarization) can be designated separately, and it is 

usually represented by ε∞ in the case of dipolar dielectrics. So 

the equation (9) can be written as: 
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To account for the orientational contribution to the dielectric 

constant, Debye [22] used the classical Boltzmann statistics 

and the Langevin function yL(y) =coth y − 1/y from the 

theory of paramagnetism, to estimate the temperature 

dependence of a permanent dipole orientation. Assuming that 

these dipoles do not interact with each other, Debye derived 

the following equation for the orientational polarizability. 
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Using Clausius-Mosotti’s internal field argument discussed 

above, this additional polarization contributes to the static 

dielectric constant according to the following formulae: 
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Here Nd is the number of dipolar molecules per unit volume 

which is the same as Nm. This equation can be rewritten in 

the following form using equation (13). 
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This result, from Debye [23], has been used successfully to 

predict the static dielectric constant of many polar gases and 

polar liquids. However, when applied to the condensed state 

of matter, Debye’s theory breaks down while predicting the 

infinite dielectric susceptibility (Mosotti catastrophe). The 

reason for this breakdown lies in the assumption that is made 

in the expression for the Clausius-Mosotti local field. The 

near field in this case is assumed to be zero. In the condensed 

phase, permanent dipoles tend to lose their individual 

freedom of orientation through association and steric 

hindrance. Their interaction with their surroundings has to be 

taken into account, and the near field cannot be ignored. 

 

 

F. Onsager theory 

 

To avoid the Mossotti catastrophe, Onsager modified the 

Debye theory by introducing a cavity. In his new approach to 

the problem, the electric field was represented by the sum of 

a ‘cavity field’ and a ‘reaction field’. If the surroundings of 

each molecule are considered to be a homogeneous 

continuum, having the macroscopic properties of the 

substance, then the ‘cavity field’ is the field inside the cavity 

of molecular dimensions, due to a uniform external field. 

This cavity field is the field in the cavity resulting from the 

polarization induced in the surrounding medium by the 

molecule in the cavity. This part of the field exerts no torque 

on the molecule. Onsager’s molecular model consisted of a 

sphere with a permanent dipole moment and an isotropic 

polarizability. Based on this model he arrives at the following 

expression, linking the molecular dipole moment with the 

static dielectric constant: 
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Onsager’s relation is very satisfactory for non associated 

polar liquids [24, 25] and can also be applied to weakly 

bound Van der Waals solids. In general, most of the solid 

dielectrics do not obey any of the local field expressions at 

sufficiently low frequencies, due to the charge carriers 

present in these materials, mostly ions, but possibly also 

electrons. This renders any meaningful measurement of the 

low frequency dielectric permittivity very difficult, making 

the comparison with the local field theory rather doubtful. 

 

 

G. Debye Theory of Dielectric Behavior 

 

Debye [26] gave the classical picture of the relaxation of 

polarization with a single relaxation time. In his work he 

considered a set of non-interacting dipoles free to rotate in 

opposition to some viscous resistance in a fluid like medium. 

The equation for complex permittivity is 
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where ε0= Dielectric constant at low frequency, ε∞ = 

Dielectric constant at high frequency, ω = Angular 

frequency, and τ = Relaxation time. According to Frohlich, 

the real and imaginary parts of the dielectric constant are 

given by 
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The maximum values of ε’ and ε’’ are, 
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(21) 

 

where n = Dipole Moment, g = Parameter related to dipole 

interaction and T = Temperature. Every molecular dipole in a 

given chain is coupled to the neighboring dipole of the same 

chain by primary valence bands so that the motion of any 

dipole affects the motion of its neighbors, and they in turn, 

influence its response to a torque. Further, in various 

configurations, which in chain molecules can assume, we can 

find another segment of the chain acting effectively as a co-

operative electrical unit, and these segments will of course 

vary in length between the improbable extremes of a single 

non-numeric unit and the whole extended chain. Such a state 

leads to the distribution of the relaxation time. On eliminating 

the parameter ωτ between the two equations and rearranging 

the two parameters (ε’ and ε”) we get, 
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The above equation is of a circle of radius
2

0 
. Only the 

semicircle over which ε” is positive has physical significance. 

Materials with a single relaxation time yield a semicircle in 

the ε’ and ε” plane. Cole [27] modified the Debye equation 

by an empirical equation for complex permittivity. 
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where α is an empirical parameter. It lies between 0 and 1, 

and it denotes the angle of tilt of the circular arc from the real 

axis. The modified expression measures the small deviation 

from the ideal Debye behavior, but some materials deviate 

very much from the Debye behavior. Havirilik and Negami 

[28] gave an expression, which is of the form, 
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The dielectric constant and losses were calculated using the 

equation valid for a parallel plate capacitor, 
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where Cx is the sample capacitance in Farad, A is area of the 

sample, d is the thickness of the sample and ε0 is a constant 

representing the permittivity of free space. The variation of 

the dielectric constant and loss tangent, suggest the net effect 

of some internal field within the crystal along with the 

external AC electric field. The dipole-dipole interactions 

between the different groups or many body interactions 

suggest lower losses with a higher frequency range. The 

dependence of the dielectric constant on frequency can be 

determined from the equation, 
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where Cg is the geometrical capacitance, S the conductance 

corresponding to the absorption current, τ is the dipole 

relaxation time and ω the angular frequency. The above 

equation shows that C should diminish with increasing 

frequency. The increase in losses at a low frequency could be 

associated with the polarization of the trapped charge 

carriers. With an increase in the frequency, polarization 

decreases and becomes vanishing small at high frequencies. 

The expression for the dielectric loss is given by the equation 

[29, 30], 
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where Gin  is the conductance for the residual current. 

Obviously, from the equation, 

 

                       
  tan0Lim  .                            (28) 

 

Differentiating the equation with respect to ω, and equating 

the derivative to zero, it is possible to obtain the value of ω of 

the frequency corresponding to the maximum loss. 

 

 

H. Dielectric Theory of Optical Properties 

 

In most cases, crystals are transparent to visible and/or 

infrared light. The interaction of the electromagnetic 

radiation with these crystals is treated, by applying the 

boundary conditions to the solutions of the Maxwell 

equations at the boundary between the different media. In the 

field of optical crystals, the wavelength of the light is always 

much larger than the inter atomic dimensions. Thus, the 

interaction of light and matter is averaged over many unit 

cells. As a consequence, the optical properties within each 

layer can be described macroscopically, in terms of 

phenomenological parameters, the so-called optical constants 

or optical parameters. As shown below, these are the real and 

imaginary parts of a complex index of refraction    . The real 

part, n (λ), is the ratio of the velocity of light in vacuum to the 

velocity of the light of the wavelength (λ) in the material. The 

imaginary part, −κ(λ), is an attenuation coefficient measuring 

the absorption of light with distance. Using the Maxwell 

equations, it is possible to relate these frequency-dependent 

“constants” to other optical parameters, such as the dielectric 

constant and conductivity. The crystals are composed of 

charged particles: bound and conduction electrons, ionic 

cores, impurities, etc. These particles move differently with 

oscillating electric fields, giving rise to polarization effects. 

At visible and infrared light frequencies, the only 

contribution to polarization comes from the displacement of 

the electron cloud, which produces an induced dipole 

moment. The parameters describing these optical effects, that 

is, the dielectric constant ε, the dielectric susceptibility χ, and 

the conductivity σ, can be treated as scalars for isotropic 

materials.  

To find out what kind of electromagnetic waves exist 

inside the dielectric films, we take ρ = −∇  P and j = ∂P/∂t, 

where ρ is an effective charge, P is the polarization induced 

by the electromagnetic wave, assumed to be proportional to 

the electric field, and j is the corresponding current density 

averaged over a small volume. Under these conditions, the 

average field Maxwell equations in MKS units read: 
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where the symbols have their usual meaning. Note that the 

normal component of the electric field E is not conserved at 

the interface between materials of different polarizability. 

Instead, D = ε0 + P, called electrical displacement, is 

conserved across such interfaces. The solutions to these 

equations have the form of harmonic plane waves with the 

wave vector k: 

 

 ).(exp0 rktiEE    ,                     (33) 

 

                 rktiHH .exp0    ,                  (34) 

 

and represent a wave travelling with a phase velocity ω/k 

=c/n, where c is the speed of light in vacuum and n is the 

n
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index of refraction. When optical absorption is present, the 

wave vector and the index are complex quantities. From the 

Maxwell equations, a dispersion relation k2 = ε(ω/c)2 is 

obtained relating the time variation with the spatial variation 

of the perturbation. In general, then, the wave vector k and 

the dielectric constant ε are complex quantities, that is, k = 

k1−ik2 and ε = ε1−iε2. It is useful to define a complex index of 

refraction: 

 

 ikn
c

kn 
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~~ .                             (35) 

 

For isotropic materials, k1 and k2 are parallel and 
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In the photon energy region where ε is real, n = ε1/2 is also 

real and the phase (ω/k) and group (∂ω/∂k) velocities are 

equal to c/n. In general, the velocity is reduced to 

v(λ)=1/√εc(λ) in the medium of a complex dielectric constant 

εc. The real part of n determines the phase velocity of the 

light wave, the imaginary part determining the spatial decay 

of its amplitude. The absorption coefficient α measures the 

intensity loss of the wave. For a beam travelling in the z 

direction, I(x) = I(0) exp(−αz), which means α = 2ωκ/c = 

4kκ/λ. 

 

 

III. DIELECTRIC LOSS 
 

The permittivity of a dielectric material has both real and 

imaginary mathematical representations. The imaginary part 

of permittivity is represented in mathematical equations as ε׀׀. 

This imaginary part of permittivity describes the energy loss 

from an AC signal as it passes through the dielectric. The real 

part of permittivity εr is also called the dielectric constant and 

relative permittivity. The permittivity of a material describes 

the relationship between an AC signal’s transmission speed 

and the dielectric material’s capacitance. When the word 

“relative” is used in front of permittivity, the implication is 

that the number is reported relative to the dielectric properties 

of a vacuum. The imaginary part of the dielectric permittivity 

which is a measure of how much field is lost as heat during 

the polarization of a material by an applied alternating 

electric field, is also termed as dielectric loss. The 

characteristic orientation of the dipoles in an electric field 

results in a frequency variation of the dielectric constant and 

loss, over a broad band of frequencies. The typical behavior 

of the real and imaginary parts of permittivity as a function of 

frequency is shown in Figure 1. [31]. 

 

 

 
 
FIGURE 1. Frequency dependence of dielectric permittivity of an 

ideal dielectric material. 

 

 

The relative permittivity of a material is related to a variety of 

physical phenomena that contribute to the polarization of the 

dielectric material. In the low frequency range the ε’’ is 

dominated by the influence of ion conductivity. The variation 

of permittivity in the microwave range is mainly caused by 

dipolar relaxation, and the absorption peaks in the infrared 

region and above, are mainly due to atomic and electronic 

polarizations. The dielectric properties of solid dielectrics at 

microwave and radio frequencies are highly influenced by the 

ionic positions and changes, caused by the lattice vibrations. 

Two types of dielectric losses are identified in crystalline 

solids at high frequencies, namely, intrinsic and extrinsic 

losses. The dielectric dispersion in solids depends on factors 

such as ionic masses, electric charge/valence state of the ions, 

spring constant of the bond, lattice imperfections etc. The 

dielectric losses close to the lattice vibration frequencies are 

generally estimated in terms of the anharmonicity of the 

lattice vibrations. The low frequency phonons are responsible 

for the intrinsic dielectric losses in solid dielectrics. The 

intrinsic loss mechanism occurs due to the interaction 

between the phonons and the microwave field, or due to the 

relaxation of the phonon distribution function. The lattice 

phonon modes will determine the intrinsic limits of the high 

frequency dielectric losses in crystalline solids. The extrinsic 

losses occur due to the interaction between the charged 

defects and the microwave fields. 

 

 

A. Complex dielectric permittivity and Maxwell equations 

 

In the case of dielectric polarization, the polarization of the 

material is related to the electric field by: 

 

                              EP e0 .                                  (38) 

This leads to: 

 

  EED re  00 1  .                      (39) 

 

For real materials D can be described as [32]: 

 

                         EjD p  .                          (40) 
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Here, ε=ε0εr, the real part of permittivity, and εp=εoε” is a 

factor describing the dielectric (polarization) losses. For a 

region filled with a homogeneous isotropic material, the first 

Maxwell equation can be written as: 

 

            E
t

D
H 




 .                          (41) 

 

Here, σ is the conductivity of the material. Substituting for D 

from equation (40) equation (41) becomes: 

 

           EiiH p ))/((   .               (42) 

 

The complex dielectric constant is defined as below: 

 

               )/(*   pi .                        (43) 

 

Here, ε is the real part of the permittivity and is defined as: 

 

                    
0 r .                                    (44) 

 

Here εr is known as the relative permittivity or dielectric 

constant, and ε0 is the permittivity of free space. Here the first 

and second terms in the imaginary part of the complex 

permittivity, represent the dielectric and ohmic losses 

respectively [33]. The loss tangent is given as: 

 

                          
'

''

tan



  .                                   (45) 

 

In this εr is used throughout to represent the relative 

permittivity of the materials and tanδ is used to represent a 

measure of the dielectric loss. 

 

 

IV. CLASSIFICATIONS OF DIELECTRIC 

MATERIALS 
 

Dielectric materials can be classified into two major 

categories: Linear (normal dielectric) materials and non linear 

dielectric materials. The linear dielectric materials can again 

be subdivided into three classes, based on the mechanism of 

electric polarization as non-polar and dipolar materials. 

 

A. Linear dielectric materials 

 

The dielectric materials, which exhibit a linear relationship 

between the polarization and applied electric field are known 

as linear dielectrics. This class of materials gets polarized 

with the application of the field, and depolarized on the 

removal of the field. Based on the nature of the polarization 

mechanism, the linear dielectrics can be grouped as follows 

[34]: 

Non polar materials: In materials of this class, an electric 

field can cause only elastic displacement of the electron cloud 

(mainly the valence electron cloud). So they have only 

electronic polarization. Such materials are generally referred 

to as elemental materials. 

Polar materials: In materials of this class, an electric field 

can cause only an elastic displacement of the electron clouds 

as well as elastic displacement of the relative positions of 

ions. These materials have both electronic and ionic 

polarization. The material may be composed of molecules 

and each of the molecules is made of more than one kind of 

atom, without any permanent dipole moment. Examples of 

such materials are ionic crystals; in this case the total 

polarizability is the sum of the ionic and electronic 

polarizabilities. 

 

                          
ie   .                                  (46) 

 

Dipolar materials: The materials of this class have all three 

fundamental polarizations: electronic, ionic and orientation. 

Thus the total polarizability for them is 

 

oie   .                               (47) 

 

 

B. Non linear dielectric materials 

 

The materials which have a spontaneous polarization even in 

the absence of an external field are grouped into the class of 

non linear dielectrics. The spontaneous polarization appears 

in these classes of materials due to their crystalline structure. 

A necessary condition for a solid to fall in the class of non 

linear dielectrics is the absence of a center of symmetry. 

Among the 32 crystal classes, 11 have a center of symmetry, 

and hence, they will not exhibit spontaneous polarization. 

Out of the remaining 21 classes of crystals without a centre of 

symmetry, 20 are piezoelectric, i.e., these crystals can be 

polarized under the influence of an external stress. Ten out of 

the 20 piezoelectric crystals exhibit the pyroelectric effect, 

i.e., the polarization of these classes of materials can be 

changed with the change of temperature. The ferroelectric 

materials discussed below, are part of the spontaneously 

polarized pyroelectrics.  

 

 

C. Ferroelectric Materials 

 

A ferroelectric material is a non-linear dielectric that exhibits 

a remanent polarization in the absence of an external electric 

field, and its direction can be switched by an applied electric 

field [35]. The name ferroelectricity comes from the 

similarities between polarizations of ferroelectric materials 

with the magnetization of ferromagnetic materials. 

Ferroelectric materials display a hysteretic effect of 

polarization with an applied field. The hysteretic loop is 

caused by the existence of permanent electric dipoles in the 

material. When the external electric field is initially increased 

from zero value, the polarization increases. as more of the 

dipoles are lined up along the direction of the field. When the 

field is strong enough, all dipoles are lined up with the field, 

so the material is in a saturation state. If the applied electric 
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field decreases from the saturation point, the polarization also 

decreases. However, when the external electric field reaches 

zero, the polarization does not reach zero. The polarization at 

the zero fields is called the remanent polarization. When the 

direction of the electric field is reversed, the polarization 

decreases. When the reverse field reaches a certain value, 

called the coercive field, the polarization becomes zero. By 

further increasing the field in this reverse direction, the 

reverse saturation can be reached. When the field is 

decreased from this saturation point, the sequence just 

reverses itself. 

In a ferroelectric material a transition occurs from a 

centro symmetric to a noncentro symmetric unit cell at the 

Curie point Tc. The shift in the structural symmetry affects 

both the structural and physical properties of the crystal. 

Ferroelectricity can be maintained only below the Curie 

temperature. When the temperature is higher than Tc, a 

ferroelectric material is in its paraelectric state. Ferroelectric 

materials have great application potential in developing smart 

electromagnetic materials, structures, and devices, including 

miniature capacitors, electrically tunable capacitors, filters 

and phase shifters, in recent years. Their application in the 

microwave frequencies are still under intensive investigation. 

 

 

V. TUNABLE DIELECTRICS 
 

Dielectric materials, which have a voltage-dependent 

dielectric constant, are termed as tunable dielectric materials 

[36]. Generally, this class of materials exhibits a large change 

in the dielectric constant, with an applied DC electric field. 

The major classes of materials being considered for tunable 

dielectric applications are ferroelectrics in their paraelectric 

state. The ferroelectric materials (FE) have been investigated 

in the microwave range since the 1950s. Only recently, the 

monolithically compatible processing of certain ferroelectric 

thin-film compounds has become possible, and has generated 

great interest and promise for designing a new class of 

tunable microwave devices. For a microwave engineer the 

main attraction of a tunable material is the strong dependence 

of its dielectric permittivity ε on the applied bias electric field 

E0. This characteristic is commonly described by a parameter 

named, tunability n, defined as the ratio of the permittivity of 

the material at zero electric field ε(0) to its permittivity at 

some non-zero electric field ε(E) as given by equation (28). 

The relative tunability nr is defined by equation (49) [36]. 
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The dielectric loss of a tunable dielectric material is also 

dependent on the applied DC electric field. Experiments 

show that a ferroelectric material with a higher loss tangent 

usually has a larger tunability. Since the loss tangent of a 

material is an important factor affecting the performances of 

the electric circuit, in the development of electrically tunable 

ferroelectric microwave devices, a figure of merit K (K-

factor), defined by K=Tunability/tanδ . 
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is often used to indicate the quality of the tunable dielectric 

materials. Usually, in the calculation of K, the loss tangent at 

the maximum external DC electric field is used [37]. 

 

 

A. Tunable materials for microwave devices 

 

Microwave materials have been widely used in a variety of 

applications ranging from communication devices to satellite 

services, and the study of their properties at microwave 

frequencies, and the development of functional microwave 

materials, have always been among the most active areas of 

solid-state physics, materials science, and electrical and 

electronic engineering. In recent years, the increasing need 

for the development of high speed and high frequency 

circuits and systems has made a thorough understanding of 

the properties of materials at microwave frequencies, a 

necessity [38]. 

Wireless systems operating in the microwave region are 

required to be lightweight, compact and of low cost, which 

could be addressed by miniaturization and integration. 

Meanwhile, the need of frequency agile applications demands 

the use of low loss, and highly tunable devices to allow 

multi-bandwidth operation with little impact on the 

component count. Microwave tunable passive devices mainly 

include filters, phase shifters, delay lines and matching 

circuits in connection with applications, such as 

reconfigurable antennas, software defined radios, etc [39, 40]. 

Implementing several separate transceiver circuits in a single 

hardware device increases the component count, and hence, 

the overall cost. Therefore, in terms of RF front end circuitry, 

significant cost saving can be achieved, by using 

electronically tunable components. In this scenario a single 

tunable component is employed to replace several fixed 

components. For example, a band pass filter (BPF) with a 

tunable pass band could replace several fixed filters or a 

tunable delay line could replace a set of fixed delay lines in 

the beam-forming network of a phased array antenna [41]. 

 

 

VI. CONCLUSION 

 

Theoretical discussions in respect of the dielectric constant 

(), which is an important physical quantity determining the 

dielectric properties of matter, have been discussed by 

Clausius-Mossotti, Debye, Onsager and others. These models 

have provided an insight into the complex polarization 

mechanisms in solids. Some new applications and results 

have been discussed. 
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