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Abstract 
Occupation of a six-seat row in a train is described using potential barriers. Assuming that the row is filled one seat at a 
time, a seating model is constructed using seat occupation probabilities based on a seat’s ability to preserve passenger 
privacy.  Introducing potentials associated with these probabilities for each seat on the row gives rise to a symmetric, 
multi-step potential barrier. Transmission and tunneling through these barriers are then used to describe likelihood of 
moving to adjacent or non-adjacent seats. 
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Resumen 
Se describe la ocupación de una fila de seis plazas en un tren, utilizando potenciales de barrera. Suponiendo que en la fila 
está ocupado un asiento a la vez, se construye un modelo de asiento utilizando las probabilidades de ocupación de asiento, 
con base a la capacidad del asiento para preservar la privacidad de los pasajeros. La introducción de los potenciales 
asociados con estas probabilidades para cada asiento en la fila, da lugar a un potencial de barrera simétrico de varios 
pasos. La transmisión y el túnel a través de estas barreras se utilizan para describir la probabilidad de pasar a los asientos 
adyacentes o no adyacentes. 
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I. INTRODUCTION  
 
As a mathematical theory, quantum mechanics is elegant and 
eloquent. Unfortunately, the machinery required to attain this 
comes at a price. Conceptual difficulties concerning energy 
and tunneling through potential wells, for example, have 
been reported [1]. This may not be surprising given the non-
intuitive concepts and abstraction of quantum theory. 

However, just like counter-intuitive problems, non-
intuitive concepts prevent trivialization and promote critical 
thinking [2]. 

In recent years, conceptual difficulties have been 
addressed with moderate success using modelling [3] and 
mathematical models. The latter is well known and the 
literature is replete with its use in many fields, not just in 
Physics.  

One important aspect of conceptual and mathematical 
models is the paradigm shift, and quite possibly attitude shift, 
on and towards concepts that it can provide. For example, it 
may be beneficial for some, to see concepts applied in other 
ways or means from those adopted in practice. These 
alternative scenarios may explain some points more clearly 
and at times may provide new insight. Either way the chance 
of attaining a thorough understanding is improved. 
In this paper, we present a model that applies the concepts of 
quantum mechanics to the familiar everyday experience of 

changing seats on a train. Using potential wells, the 
probability of changing or migrating to an unoccupied seat is 
investigated. Some results are counterintuitive, resulting 
from the mathematics of quantum mechanics while some are 
intuitive and is described rather well by the model. 

In the next section, an algorithm for train seat selection is 
presented with the aim of preserving the privacy of the 
passenger. This is followed by seat occupational 
probabilities and seat potentials based on seat popularity in 
Section III. The mathematics of step-up and step-down 
potentials is applied to passengers moving to adjacent seats 
in Section IV. The case of migration to non-adjacent seats is 
discussed briefly in Section V. 
 
 
II. SEAT SELECTION 
 
Consider a transverse row of six train seats, Si where i = 1, 2, 
3, 4, 5, 6, with S1 and S6 making up the ends of the row (see 
Fig. 1). A passenger’s choice of seat is motivated by the 
desire to keep his or her privacy for the duration of the 
journey.  This is accomplished when a passenger does not sit 
next to any other passenger on the row. A seating 
arrangement that achieves this goal will be called a 
configuration [4]. 
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FIGURE 1. A row of six train seats in a transverse configuration 
[5]. In our example, the seats S1 and S6, adjacent to the Plexiglas 
panels at the ends of the row are the most desirable for passengers 
and will be occupied most of the time. 
 
 
A configuration is saturated if the privacy of any seated 
passenger is violated when the next passenger sits down.  

That is, in a saturated configuration, one or two seated 
passengers will lose their privacy when the next passenger 
sits down. 

Let us consider a possible configuration, assuming that 
the row is filled one seat at a time. The first passenger can 
choose any seat but by choosing S1 or S6 he or she is 
guaranteed to sit next to one other passenger if the row is 
filled. This guarantee extends to the second passenger who 
occupies the end-of-row seat not chosen by the first 
passenger. By the time the third passenger choses, only four 
seats, S2, S3, S4, and S5, are available and the guarantee 
enjoyed by the first two passengers can no longer be enjoyed. 

In order to maintain privacy the third passenger opts for 
either S3 or S4 because S1 and S6 are occupied.  

These considerations suggest that saturation is attained 
after the third passenger sits down. Similar seating 
algorithms assume that the remaining seats will be chosen at 
random post-saturation [4].  

In our example because the third passenger’s choice 
between S3 and S4 depends on the first passenger’s choice, 
we will assume for simplicity that the fourth passenger 
occupies either S3 or S4 depending on the third passenger’s 
choice.  

That is, the fourth passenger sits next to the third 
passenger but not next to the first passenger or the second 
passenger. This leaves S2 and S5 as the remaining seats to be 
filled. Note that occupants of these two seats sit next to two 
passengers instead of one. 
 
 
III. OCCUPATIONAL PROBABILITIES 
 
In the seat selection process presented, seats are chosen in 
order to preserve privacy. We will assume, given that the 
violation of privacy is imminent, that it is more preferable to 
sit next to one passenger than it is to sit next to two. 

Consequently some seats will be more desirable than others 
and these more desireable seats will be occupied most of the 
time. Thus the probability of more desirable seats being 
occupied has to be greater than that of less desirable seats. 

Let P(Si) be the probability that the seat Si is occupied. 
If passengers must sit, then the sum of P(Si) taken over 

all seats on a row is unity. According to the model described 
in the previous section, S1 and S6 will have the greatest 
occupational probabilities because it is more desirable to sit 
next to one passenger than two (see Fig 2(a)).  

We conclude that, P(S1) = P(S6) since passengers 
occupying S1 and S6 are guaranteed to sit next to just one 
passenger. Some may choose seat 1 over seat 6, and vice 
versa, depending on the direction of travel for example, but 
this does not affect their occupational probabilities. Also 
from the previous section, we have P(S3) = P(S4) whether S3 
or S4 is chosen first and that P(S1) > P(S3). The seats S2 and 
S5 have the lowest occupational probabilities and because 
occupants of these seats sit next to two passengers, we will 
take P(S2) = P(S5) and P(S5) < P(S3). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
                  (a)                                                 (b) 
 
FIGURE 2. (a) Three seats in a transverse row [5]. (b) 
Corresponding seat potentials. Lower seat potential is associated 
with more desirable seats. The seat S1 adjacent to the Plexiglas 
panels is the most desirable amongst the three shown here. 

 
 
We represent occupational probabilities graphically using 
seat potentials as shown in Fig 2(b). In this representation, a 
potential well one seat wide is used to represent a seat along 
the row with the depth of the potential well indicating the 
occupational probability for the corresponding seat.  

Thus the potential wells representing seats 1 and 6, 3 and 
4, 2 and 5, have equal depths (see Fig. 2). In addition, the 
potential wells representing S1 and S6 are deeper than those 
represented by S3 and S4, which in turn, are deeper than those 
represented by S2 and S5.  
In the next section, we will model a seated passenger as a 
particle in a corresponding potential well with one particle 
per well. A potential well is empty when the seat it represents 
is unoccupied. 
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IV. MOVING TO AN ADJACENT SEAT 
 
An unoccupied seat, regardless of its occupational 
probability, may or may not be occupied. The vacancy can 
be filled either by a passenger wishing to sit on the row, or 
by another passenger already seated on the row. In the latter 
case, we will assume that the passenger is seated adjacent to 
the seat to be occupied. Considering adjacent seats only 
ignores other seats, occupied or unoccupied. This means that 
changing seats may violate a passenger’s privacy. The 
associated seat potentials will be scaled in such a way to 
make the seat with greater occupational probability have 
zero potential (see Fig. 2 and Fig. 1). There is no loss in 
generality by using this procedure. Three possible outcomes 
of seat migration are discussed below. 
 
A. Moving from a more popular seat 
 
The first case is when a passenger moves from a seat with 
greater occupational probability; for example from S1 to S2 
which is essentially a step-up potential (see Fig. 3 inset).  

We see that a potential step of height V0, serving as a 
demarcation between two adjacent seats with V = 0 for the 
region x < 0 representing a seat with greater occupational 
probability and V = V0 for the region x > 0 representing a seat 
with lower occupational probability 

We model a moving passenger as a beam of particles 
travelling from the region x < 0 to x > 0. The fact that each 
seat in the row has equal and finite width is not taken into 
account. In Eq. (1), the reflection amplitude coefficient r, 
assuming that the particle’s energy E > V0, is given by [6]: 
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We interpret r as a quantity related to the probability of 
staying in the current seat. With this interpretation, for given 
values of momentum p, mass m, and energy E > V0, greater 
V0 yields greater r as shown in Fig.3.  

This suggests that Eq. (1) indicates that it is less likely 
that a passenger in S1 will move to S2 compared to a 
passenger in S4 moving to S5. This is a reasonable result 
since, from Section 2, P(2) = P(5) and P(1) > P(4). 

Furthermore, because P(4) = P(3), then moving from S3 
to S2 is just as probable as moving from S4 to S5. Thus a 
passenger is less likely to give up a seat that guarantees 
having to sit, at the most, to another passenger.  

These considerations suggest that there is satisfactory 
agreement between the mathematics of potential wells and 
the changing of seats of passengers in a train. 
 
B. Moving from a less popular seat 

 
The second case is when a passenger moves from a seat with 
lower occupational probability; for example from S5 to S6 
(see Fig .4). This is a step-down potential. Figure 4 illustrates 
a potential step of height V0. This potential distinguishes 
between two adjacent seats with V = V0 for the region x < 0 

representing a seat with lower occupational probability and 
V = 0 for the region x > 0 representing a seat with higher 
occupational probability. As in the previous discussion, the 
finite width of the seats is not taken into account. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3. Reflection coefficients for a passenger moving from a 
more popular seat (low seat potential) to a less popular seat (high 
set potential).  This is effectively a step-up potential. The general 
trend is consistent across different values of E. INSET: Step-up 
potential of height V0.   
 
 
A moving passenger is modeled as a beam of particles 
travelling from the region x < 0 to x > 0. The reflection 
amplitude coefficient r, assuming that the particle’s energy 
E > V0, is given by [6]; 
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We continue to interpret r as a quantity related to the 
probability of staying in the current seat.  With this 
interpretation, for given values of momentum p, mass m, and 
energy E >V0, greater V0 yields greater r.  

This result is counterituitive becuase the passenger is 
moving to a more popular seat, which is essentially a step-
down potential (see Fig.4 inset). This means that there is a 
smaller chance of staying in the current seat, which is less 
popular. Furthermore, we find that greater V0 increases r.  

These counter-intuitive observations, described in the 
context of square potential wells as paradoxical reflection 
and paradoxical confinement, has been reported previously 
[7].   

In Fig. 4, we compare the reflection coefficients for a 
passenger moving from a less popular seat and a passenger 
moving from a more popular seat according to Eq. (2) and 
Eq. (1) respectively. Surprisingly the probability of staying 
in an unpopular seat is greater than staying in a popular seat, 
verifying paradoxical reflection. 

V
 

x < 0 x > 0 
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FIGURE 4. Comparing reflection coefficients for a passenger 
moving from a less popular seat (high seat potential) and a 
passenger moving from a more popular seat (low set potential) for 
E = 0. INSET: Step-down potential of height V0. 
 
 
We conclude that in this particular case, the mathematics of 
potential wells do not completely and satisfactorily describe 
passenger seat migration on trains. 
 
C. Moving to an equally popular seat 

 
The third case is when a passenger moves to a seat with equal 
occupational probability to the one currently occupied. The 
potential V0 = 0 and this is only possible when moving from 
S3 to S4 or from S4 to S3 (see Fig. 2). Because V0 = 0, using 
Eq. (1) or Eq. (2) gives r = 0, suggesting that a passenger will 
always move to a seat that is perceived to be as desirable as 
the current one occupied. Clearly, this is not a practical 
result, and should be interpreted in the context of our whole 
discussion.   
 
 
V. MOVING TO A NON-ADJACENT SEAT 
 
In the previous section, step potentials were used to describe 
passengers that move to adjacent seats. In this section, we 
will consider the case when a passenger moves to non-
adjacent seats. We will ignore the seats that do not play a part 
in the migration and any possible violation to passengers’ 
privacy.  

A migrating passenger will be modelled as a particle that 
tunnels through intermediate seats. Again, the associated seat 
potentials will be scaled in such a way to make the seat with 
greater occupational probability have zero potential.  

Consider a passenger that tunnels from a seat with greater 
occupational probability, for example from S1 to S3 through 
S2, which is represented by a potential barrier of width L as 
shown in Fig. 5. Initially the passenger is in the region x < 0 
representing a seat with greater occupational probability and 

tunnels a distance L to the region x > L representing a seat 
with lower occupational probability. 
 
 
 
 
 
 

 
 
 
FIGURE 5. A potential barrier of width L. The region with lower 
potential represents a seat that is chosen more often compared to 
the seat represented by the region with higher potential. 
 
 
We will base our discussion assuming that V1 = V2 which is 
customary in the literature. During the seat selection process 
the passengers choose the best available seat without making 
provisions for a possible change in seat. Because the best 
possible seat was chosen and occupied, the desire to change 
seats is taken to be minimal. Assuming that the particle’s 
energy is low, the transmission amplitude coefficient T, is 
given by [8]; 
 

LVceT −≈ .                                   (3) 
 
where V1 = V2 = V and c is a constant while the term √VL 
approximates the area of the barrier. As a first approximation 
then, the transmission probability T is dependent on the area 
of the barrier and the greater the area, the lesser the chances 
of tunneling or moving seats. These considerations suggest, 
for example, that it is less likely that a passenger will move 
from S1 to S6 than moving from S2 to S5. 

Using Eq.(3) as a coarse approximation when V1 ≠ V2 
suggest that it is less likely for a passenger to move from S1 
to S4 than from S1 to S3, even if P(3) = P(4), while the 
probability of moving from S1 to S5 is even lower. In 
addition, the symmetry in seat potentials of the presented 
model indicate that moving from S6 to S4, which is equally 
probable as moving from S1 to S3, is more likely than moving 
from S6 to S3.   

We note from Eq. (1) and Eq. (2) that r2 < 1, where r2 is 
related to the probability of not moving to an adjacent seat 
and from Eq. (3) that R + T ≈ 1, where R is related to the 
probability of not moving to a non-adjacent seat. Using these 
relations we have R – r2 > T which for V sufficiently high 
with p2 > 2m(E ± V) leads to R > r2.  

These considerations imply that it is more likely that a 
passenger will move to an adjacent seat than a non-adjacent 
seat. This serves to set the bounds for the validity of the 
model, as this trend is not true for all vales of energy. 
 
 
VI. CONCLUSIONS 
 
This work presents a real-life, familiar, application of the 
mathematics used in quantum mechanics. It is hoped that this 
paper would help improve the conceptual understanding of 
potential wells and barriers by providing a different 
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application but similar interpretation of the relevant 
mathematics. This paper also illustrates that the mathematics 
of quantum mechanics can be non-intuitive, a characteristic 
of most, if not all, concepts of quantum theory. 

The model presented in this work assumes that train seat 
occupation probabilities do not change, and that when a 
passenger chooses a seat, there is no knowledge of 
subsequent passengers. Passengers also, need not fill the row 
sequentially as other rows or even cars are available. 
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